diff options
Diffstat (limited to '3878')
-rw-r--r-- | 3878/CH1/EX1.10/Ex1_10.sce | 16 | ||||
-rw-r--r-- | 3878/CH1/EX1.9/Ex1_9.sce | 10 | ||||
-rw-r--r-- | 3878/CH11/EX11.1/Ex11_1.sce | 14 | ||||
-rw-r--r-- | 3878/CH21/EX21.5/Ex21_5.sce | 15 | ||||
-rw-r--r-- | 3878/CH21/EX21.7/Ex21_7.sce | 14 | ||||
-rw-r--r-- | 3878/CH22/EX22.2/Ex22_2.sce | 10 | ||||
-rw-r--r-- | 3878/CH22/EX22.3/Ex22_3.sce | 16 | ||||
-rw-r--r-- | 3878/CH6/EX6.2/Ex6_2.sce | 9 | ||||
-rw-r--r-- | 3878/CH6/EX6.4/Ex6_4.sce | 15 |
9 files changed, 119 insertions, 0 deletions
diff --git a/3878/CH1/EX1.10/Ex1_10.sce b/3878/CH1/EX1.10/Ex1_10.sce new file mode 100644 index 000000000..976d44253 --- /dev/null +++ b/3878/CH1/EX1.10/Ex1_10.sce @@ -0,0 +1,16 @@ +clear +// +// Variable declaration +T_f=3// The temperature of fluid in °C +T_wi=11.5// The temperature of water at inlet in °C +T_wo=6.4// The temperature of water at outlet in °C +A=420// The surface area in m**2 +U=110// The thermal transmittance in W/(m**2 K) + +// Calculation +delT_max=T_wi-T_f// The maximum temperature difference in K +delT_min=T_wo-T_f// The minimum temperature difference in K +LMTD=(delT_max-delT_min)/log(delT_max/delT_min) +Q_f=U*A*LMTD// The amount of heat transfer in W +printf("\n The logarithmic mean temperature difference is %0.3f K",LMTD) +printf("\n The amount of heat transfer is %0.0f W (round off error) or %0.0f ",Q_f,Q_f/1000) diff --git a/3878/CH1/EX1.9/Ex1_9.sce b/3878/CH1/EX1.9/Ex1_9.sce new file mode 100644 index 000000000..d538b6108 --- /dev/null +++ b/3878/CH1/EX1.9/Ex1_9.sce @@ -0,0 +1,10 @@ +clear +// Variable declaration +R_i=0.3// The inside surface resistance in (m**2 K)/W +R_c=1/2.8// The thermal conductance of plastered surface in (m**2 K)/W +R_o=0.05// The outside surface resistance in (m**2 K)/W + +// Calculation +R_t=R_i+R_c+R_o// The total thermal resistance in (m**2 K)/W +U=1/R_t// The overall transmittance in W/(m**2 K) +printf("\n The overall transmittance,U= %0.3f W/(m**2 K)",U) diff --git a/3878/CH11/EX11.1/Ex11_1.sce b/3878/CH11/EX11.1/Ex11_1.sce new file mode 100644 index 000000000..03e5caf5c --- /dev/null +++ b/3878/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,14 @@ +clear +// Variable declaration +T_c=34// The condensing temperature in °C +T_s=30// The subcooled temperature in °C +g=9.81// m/s**2 + +// Calculation +P_c=15.69// Saturation pressure at 34°C in bar +P_s=14.18// Saturation pressure at 30°C in bar +dp=P_c-P_s// Permissible pressure drop in bar +rho=1022// Specific mass of liquid in kg/m**3 +H=(dp*10**5)/(rho*g)// Possible loss in static head in m +printf("\n Possible loss in static head=%2.1f m",H) + diff --git a/3878/CH21/EX21.5/Ex21_5.sce b/3878/CH21/EX21.5/Ex21_5.sce new file mode 100644 index 000000000..c0683f5c9 --- /dev/null +++ b/3878/CH21/EX21.5/Ex21_5.sce @@ -0,0 +1,15 @@ +clear +// Variable declaration +T_s=100// The temperature of steam in °C +T_d=21// The dry bulb temperature in °C +H=50// % saturation +x_ab=0.0079// Moisture content of air before in kg/kg +x_a=0.0067// Moisture added in kg/kg +C_ps=1.972// The specific heat capacity of the steam in kJ/kg°C +C_pa=1.006// The specific heat capacity of air in kJ/kg.K + +// Calculation +x=x_ab+x_a// Final moisture content in kg/kg +t=((x_a*C_ps*T_s)+(C_pa*T_d))/(((x_a*C_ps)+(C_pa)))// The final dry bulb temperature in °C +printf("\n \nFinal moisture content=%0.4f kg/kg \nThe final dry bulb temperature,t=%2.2f°C",x,t) + diff --git a/3878/CH21/EX21.7/Ex21_7.sce b/3878/CH21/EX21.7/Ex21_7.sce new file mode 100644 index 000000000..bb63f86f4 --- /dev/null +++ b/3878/CH21/EX21.7/Ex21_7.sce @@ -0,0 +1,14 @@ +clear +// Variable declaration +m_w=4// The mass of water in kg +m_a=1// The mass of air in kg +h_ab=45.79// Enthalpy of air before in kJ/kg +h_aa=26.7// Enthalpy of air after in kJ/kg +C_pw=4.187// The specific heat capacity of water in kJ/kg.K + +// Calculation +Q_l=h_ab-h_aa// Heat lost per kilogram air in kJ +Q_g=Q_l/m_w// Heat gain per kilogram water in kJ +dT=Q_g/C_pw// Temperature rise of water in K +printf("\n Temperature rise of water=%1.0f K",dT) + diff --git a/3878/CH22/EX22.2/Ex22_2.sce b/3878/CH22/EX22.2/Ex22_2.sce new file mode 100644 index 000000000..72805a316 --- /dev/null +++ b/3878/CH22/EX22.2/Ex22_2.sce @@ -0,0 +1,10 @@ +clear +// Variable declaration +T_d=37// The dry bulb temperature of air in °C +T_w=25.4// The cooling temperature of water in °C +cf=0.80// Contact factor + +// Calculation +T_df=T_d-(cf*(T_d-T_w))// The dry bulb temperature (final) in °C +printf("\n The dry bulb temperature (final)=%2.1f °C point D ",T_df) +printf("\n \nThe wet bulb is now 18.9°C and the enthalpy is 53 kJ/kg.") diff --git a/3878/CH22/EX22.3/Ex22_3.sce b/3878/CH22/EX22.3/Ex22_3.sce new file mode 100644 index 000000000..cfde6d548 --- /dev/null +++ b/3878/CH22/EX22.3/Ex22_3.sce @@ -0,0 +1,16 @@ +clear +// Variable declaration +T_d=26// The dry bulb temperature of air in °C +T_w=20// The wet bulb temperature of water in °C +T_win=29// The temperature of water at inlet in °C +T_wout=24// The temperature of water at outlet in °C +C_pw=4.187// The specific heat capacity of water in kJ/kg.K + +// Calculation +Q=C_pw*(T_win-T_wout)// Heat from water in kJ/kg +h_ain=57.1// Enthalpy of entering air in kJ/kg +h_aout=78.1// Enthalpy of leaving air in kJ/kg +printf("\n \nHeat from water=%2.0f kJ/kg \nEnthalpy of entering air=57.1 kJ/kg \nEnthalpy of leaving air=78.1 kJ/kg",Q) + +printf("\n From the chart, the air leaves at approximately 25.7°C dry bulb") + diff --git a/3878/CH6/EX6.2/Ex6_2.sce b/3878/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..f56ea478e --- /dev/null +++ b/3878/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,9 @@ +clear +// Variable declaration +deltaT=5.2// The temperature rise in K +E=930// Total duty at the condenser in kW +C_pw=4.187// The specific heat of water in kJ/kg K + +// Calculation +mdot=E/(deltaT*C_pw)// The amount of water required in kg/s +printf("\n %0.3f kg/s water flow is required.",mdot) diff --git a/3878/CH6/EX6.4/Ex6_4.sce b/3878/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..17bab9448 --- /dev/null +++ b/3878/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,15 @@ +clear +// Variable declaration +Cc=700// The cooling capacity in kW +P_c=170// The compressor power in kW +c_b=0.0012// Concentration of solids in bleed-off (kg/kg) +c_m=0.00056// Concentration of solids in make-up water in kg/kg + +// Calculation +E_tc=Cc+P_c// Cooling tower capacity in kW +h_fg=2420// Latent heat of water vapour in kJ/kg +w_e=E_tc*10**3/h_fg// Rate of evaporation in g/s +w_m=(w_e*(c_b))/(c_b-c_m)// Rate of make up in kg/s +w_bo=w_m-w_e// Rate of bleed off in kg/s +printf("\n \nRate of make up=%0.2f kg/s \nRate of bleed off=%0.2f kg/s",w_m/1000,w_bo/1000) + |