diff options
Diffstat (limited to '3878/CH21')
-rw-r--r-- | 3878/CH21/EX21.1/Ex21_1.sce | 15 | ||||
-rw-r--r-- | 3878/CH21/EX21.10/Ex21_10.sce | 13 | ||||
-rw-r--r-- | 3878/CH21/EX21.2/Ex21_2.sce | 11 | ||||
-rw-r--r-- | 3878/CH21/EX21.3/Ex21_3.sce | 24 | ||||
-rw-r--r-- | 3878/CH21/EX21.6/Ex21_6.sce | 18 | ||||
-rw-r--r-- | 3878/CH21/EX21.8/Ex21_8.sce | 16 |
6 files changed, 97 insertions, 0 deletions
diff --git a/3878/CH21/EX21.1/Ex21_1.sce b/3878/CH21/EX21.1/Ex21_1.sce new file mode 100644 index 000000000..591c97dbd --- /dev/null +++ b/3878/CH21/EX21.1/Ex21_1.sce @@ -0,0 +1,15 @@ +clear +// Variable declaration +m_a=68// The mass flow rate of air in kg/s +T_1=16// The temperature of air at inlet in °C +T_2=34// The temperature of air at outlet in °C +T_win=85// The temperature of hot water at inlet in °C +T_wout=74// The temperature of hot water at outlet in °C +C_pa=1.02// The specific heat capacity of air in kJ/kg.K +C_pw=4.187// The specific heat capacity of water in kJ/kg.K + +// Calculation +Q=m_a*C_pa*(T_2-T_1)// Heat input in kW +m_w=Q/(C_pw*(T_win-T_wout))// The mass flow rate of water in kg/s +printf("\n \nHeat input,Q=%4.0f kW \nThe mass flow rate of water,Q=%2.0f kg/s",Q,m_w) + diff --git a/3878/CH21/EX21.10/Ex21_10.sce b/3878/CH21/EX21.10/Ex21_10.sce new file mode 100644 index 000000000..12809173a --- /dev/null +++ b/3878/CH21/EX21.10/Ex21_10.sce @@ -0,0 +1,13 @@ +clear +// Variable declaration +T_d=23// The dry bulb temperature in °C +H=40// % saturation +SH=36// The sensible heat to be removed in kW +LH=14// The latent heat in kW + +// Calculation +// Plotting on the chart ( Figure 21.10 ) from 23°C/40% and using the ratio +R=SH/(SH+LH) +printf("\n The process line meets the saturation curve at - 1°C, giving the ADP (which meansthat condensate will collect on the fins as frost).") + +printf("\n Taking the condition at 5°C dry bulb and measuring the proportion along theprocess line gives a coil contact factor of 75") diff --git a/3878/CH21/EX21.2/Ex21_2.sce b/3878/CH21/EX21.2/Ex21_2.sce new file mode 100644 index 000000000..67587f834 --- /dev/null +++ b/3878/CH21/EX21.2/Ex21_2.sce @@ -0,0 +1,11 @@ +clear +// Variable declaration +Q=500// The amount of heat required for the building in kW +T=19// The temperature at which air enters the heater coil in °C +m_a=68// // The mass flow rate of air in kg/s +C_pa=1.02// The specific heat capacity of air in kJ/kg.K + +// Calculation +t=T+(Q/(m_a*C_pa))// The air supply temperature in °C +printf("\n The air-supply temperature,t=%2.1f°C",t) + diff --git a/3878/CH21/EX21.3/Ex21_3.sce b/3878/CH21/EX21.3/Ex21_3.sce new file mode 100644 index 000000000..af36e332b --- /dev/null +++ b/3878/CH21/EX21.3/Ex21_3.sce @@ -0,0 +1,24 @@ +clear +// Variable declaration +T_ra=21// The temperature of the returning air +H=50// % saturation +T_d=28// The dry bulb temperature in °C +T_w=20// The wet bulb temperature in °C +m_a=20// The mass flow rate of returning air in kg/s +m_b=3// The mass flow rate of outside air in kg/s +x_ra=0.0079// The moisture content in kg/kg +x_oa=0.0111// The moisture content in kg/kg +h_a=41.8// The enthalpy in kJ/kg +h_b=56.6// The enthalpy in kJ/kg + +// Calculation +// Method (b) +t_c=((T_ra*m_a)+(T_d*m_b))/(m_a+m_b)// °C +g_c=((x_ra*m_a)+(x_oa*m_b))/(m_a+m_b)// kg/kg +h_c=((h_a*m_a)+(h_a*m_b))/(m_a+m_b)// kJ/kg dry air +printf("\n \nThe condition of the mixture,t_c=%2.1f°C",t_c) + +printf("\n \n g_c=%0.4f kg/kg",g_c) + +printf("\n \n h_c=%2.1f kJ/kg dry air",h_c) + diff --git a/3878/CH21/EX21.6/Ex21_6.sce b/3878/CH21/EX21.6/Ex21_6.sce new file mode 100644 index 000000000..ca8b71e25 --- /dev/null +++ b/3878/CH21/EX21.6/Ex21_6.sce @@ -0,0 +1,18 @@ +clear +// Variable declaration +T_d1=23// The dry bulb temperature in °C +T_w=5// The temperature of water in °C +H=50// % saturation +n_s=0.7// Saturation efficiency in % +x_a=0.0089// Moisture content in kg/kg +x_b=0.0054// Moisture content in kg/kg + +// Calculation +//(a) +printf("\n (a) By construction on the chart ( Figure 21.7 ), the final condition is 10.4°C dry bulb,82 percents saturation") + +//(b) +T_d2=T_d1-(n_s*(T_d1-T_w))// The final dry bulb temperature in °C +x_f=x_a-(n_s*(x_a-x_b))// kg/kg +printf("\n \n(b)The final condition,\n The final dry bulb temperature=%2.1f°C \n The moisture content=%0.5f kg/kg",T_d2,x_f) + diff --git a/3878/CH21/EX21.8/Ex21_8.sce b/3878/CH21/EX21.8/Ex21_8.sce new file mode 100644 index 000000000..9b09eb799 --- /dev/null +++ b/3878/CH21/EX21.8/Ex21_8.sce @@ -0,0 +1,16 @@ +clear +// Variable declaration +T_d1=24// The dry bulb temperature in °C +T_d2=7// The dry bulb temperature in °C +H=45// % saturation +cf=0.78// Contact factor +h_1=45.85// The enthalpy in kJ/kg +h_2=22.72// The enthalpy in kJ/kg + +// Calculation +//(a) By construction on the chart ( Figure 21.9 ), 10.7°C dry bulb, 85% saturation. +//(b) By calculation, the dry bulb will drop 78% of 24 to 7°C: +dT=T_d1-(cf*(T_d1-T_d2))// The drop in dry bulb temperature in °C +dh=h_1-(cf*(h_1-h_2))// The drop in enthalpy in kJ/kg +printf("\n \nThe drop in dry bulb temperature=%2.1f°C \nThe drop in enthlpy=%2.2f kJ/kg",dT,dh) + |