summaryrefslogtreecommitdiff
path: root/3864/CH7
diff options
context:
space:
mode:
Diffstat (limited to '3864/CH7')
-rw-r--r--3864/CH7/EX7.1/Ex7_1.sce35
-rw-r--r--3864/CH7/EX7.12/Ex7_12.sce30
-rw-r--r--3864/CH7/EX7.14/Ex7_14.sce40
-rw-r--r--3864/CH7/EX7.16/Ex7_16.sce54
-rw-r--r--3864/CH7/EX7.18/Ex7_18.sce26
-rw-r--r--3864/CH7/EX7.19/Ex7_19.sce64
-rw-r--r--3864/CH7/EX7.2/Ex7_2.sce29
-rw-r--r--3864/CH7/EX7.20/Ex7_20.sce49
-rw-r--r--3864/CH7/EX7.21/Ex7_21.sce59
-rw-r--r--3864/CH7/EX7.22/Ex7_22.sce39
-rw-r--r--3864/CH7/EX7.23/Ex7_23.sce47
-rw-r--r--3864/CH7/EX7.4/Ex7_4.sce29
-rw-r--r--3864/CH7/EX7.7/Ex7_7.sce32
-rw-r--r--3864/CH7/EX7.9/Ex7_9.sce42
14 files changed, 575 insertions, 0 deletions
diff --git a/3864/CH7/EX7.1/Ex7_1.sce b/3864/CH7/EX7.1/Ex7_1.sce
new file mode 100644
index 000000000..98d6372db
--- /dev/null
+++ b/3864/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,35 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+sigma1=30 //N/mm**2 //Stress in tension
+d=20 //mm //Diameter
+sigma2=90 //N/mm**2 //Max compressive stress
+sigma3=25 //N/mm**2
+
+//Calculations
+
+//In TEnsion
+
+//Corresponding stress in shear
+P=sigma1*2**-1 //N/mm**2
+
+//Tensile force
+F=%pi*4**-1*d**2*sigma1
+
+//In Compression
+
+//Correspong shear stress
+P2=sigma2*2**-1 //N/mm**2
+
+//Correspong compressive(axial) stress
+p=2*sigma3 //N/mm**2
+
+//Corresponding Compressive force
+P3=p*%pi*4**-1*d**2 //N
+
+//Result
+printf("\n Failure Loads are: %0.2f N",F)
+printf("\n : %0.2f N",P3)
diff --git a/3864/CH7/EX7.12/Ex7_12.sce b/3864/CH7/EX7.12/Ex7_12.sce
new file mode 100644
index 000000000..40bfce331
--- /dev/null
+++ b/3864/CH7/EX7.12/Ex7_12.sce
@@ -0,0 +1,30 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Direct stresses
+p_x=120 //N/mm**2 //Tensile stress
+p_y=-100 //N/mm**2 //Compressive stress
+p1=160 //N/mm**2 //Major principal stress
+
+//Calculations
+
+//Let q be the shearing stress
+
+//p1=(p_x+p_y)*2**-1+((((p_x+p_y)*2**-1)**2)+q**2)**0.5
+//After further simplifying we get
+q=(p1-((p_x+p_y)*2**-1))**2-((p_x-p_y)*2**-1)**2 //N/mm**2
+q2=(q)**0.5 //N/mm**2
+
+//Minimum Principal stress
+p2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q2**2)**0.5 //N/mm**2
+
+//Max shearing stress
+q_max=(((p_x-p_y)*2**-1)**2+q2**2)**0.5 //N/mm**2
+
+//Result
+printf("\n Shearing stress of material %0.2f N/mm**2",q)
+printf("\n Min Principal stress %0.2f N/mm**2",p2)
+printf("\n Max shearing stress %0.2f N/mm**2",q_max)
diff --git a/3864/CH7/EX7.14/Ex7_14.sce b/3864/CH7/EX7.14/Ex7_14.sce
new file mode 100644
index 000000000..a000a0993
--- /dev/null
+++ b/3864/CH7/EX7.14/Ex7_14.sce
@@ -0,0 +1,40 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+F=40*10**3 //N //Shear Force
+M=20*10**6 //Bending Moment
+
+//Rectangular section
+b=100 //mm //Width
+d=200 //mm //Depth
+
+x=20 //mm //Distance from Top surface upto point
+y=80 //mm //Distance from point to Bottom
+
+//Calculations
+
+I=1*12**-1*b*d**3 //mm**4 //M.I
+
+//At 20 mm Below top Fibre
+f_x=M*I**-1*y //N/mm**2 //Stress
+
+//Assuming sagging moment ,f_x is compressive p_x=f_x=-24 //N/mm**2
+f_x=-24 //N/mm**2
+p_x=-24
+
+//Shearing stress
+q=F*(b*I)**-1*(b*x*(b-x*2**-1)) //N/mm**2
+
+//Direct stresses
+
+p_y=0 //N/mm**2
+
+p1=(p_x+p_y)*2**-1+(((p_x+p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+p2=(p_x+p_y)*2**-1-(((p_x+p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Result
+printf("\n Directions of principal stresses at a point below 20mm is: %0.2f N/mm**2",p1)
+printf("\n %0.2f N/mm**2",p2)
diff --git a/3864/CH7/EX7.16/Ex7_16.sce b/3864/CH7/EX7.16/Ex7_16.sce
new file mode 100644
index 000000000..d0f69cf48
--- /dev/null
+++ b/3864/CH7/EX7.16/Ex7_16.sce
@@ -0,0 +1,54 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=8000 //mm //Span of beam
+w=40*10**6 //N/mm //udl
+
+//I-section
+
+//Flanges
+b=100 //mm //Width
+t=10 //mm //Thickness
+
+D=400 //mm //Overall Depth
+t2=10 //mm //thickness of web
+
+//Calculations
+
+//Let R_A and R_B be the Reactions at A & B respectively
+R_A=w*2**-1*L*10**-9 //KN
+
+//Shear force at 2m for left support
+F=R_A-2*w*10**-6 //KN
+
+//Bending Moment
+M=R_A*2-2*w*10**-6 //KN-m
+
+//M.I
+I=1*12**-1*b*D**3-1*12**-1*(b-t)*(D-2*t2)**3 //mm**4
+
+//Bending stress at 100 mm above N_A
+f=M*10**6*I**-1*b
+
+//Shear stress
+q=F*10**3*(t*I)**-1*(b*t*(D-t)*2**-1 +t2*(b-t2)*145) //N/mm**2
+
+p_x=-197.06 //N/mm**2
+p_y=0 //N/mm**2
+q=21.38 //N/mm**2
+
+//Principal Stresses
+
+P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Result
+printf("\n Principal Stresses are: %0.2f N/mm**2",P1)
+printf("\n %0.2f N/mm**2",P2)
+printf("\n Max shear stress %0.2f N/mm**2",q_max)
diff --git a/3864/CH7/EX7.18/Ex7_18.sce b/3864/CH7/EX7.18/Ex7_18.sce
new file mode 100644
index 000000000..d2cefbbfc
--- /dev/null
+++ b/3864/CH7/EX7.18/Ex7_18.sce
@@ -0,0 +1,26 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=100 //mm //Diameter of shaft
+M=3*10**6 //N-mm //B.M
+T=6*10**6 //N-mm //Twisting Moment
+mu=0.3
+
+//Calculations
+
+//Max principal Stress
+
+P1=16*(%pi*d**3)**-1*(M+(M**2+T**2)**0.5) //N/mm**2
+P2=16*(%pi*d**3)**-1*(M-(M**2+T**2)**0.5) //N/mm**2
+
+//Direct stress
+P=(P1)-mu*(P2) //N/mm**2
+
+
+//Result
+printf("\n Principal stresses are: %0.2f N/mm**2",P1)
+printf("\n : %0.2f N/mm**2",P2)
+printf("\n Stress Producing the same strain is %0.2f N/mm**2",P)
diff --git a/3864/CH7/EX7.19/Ex7_19.sce b/3864/CH7/EX7.19/Ex7_19.sce
new file mode 100644
index 000000000..63e01c0f3
--- /dev/null
+++ b/3864/CH7/EX7.19/Ex7_19.sce
@@ -0,0 +1,64 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=75 //mm //diameter
+P=30*10**6 //W //Power transmitted
+W=6 //N-mm/sec //Load
+L=1000 //mm
+N=300 //r.p.m
+
+//Calculations
+
+//B.M
+M=W*L*4**-1 //N-mm
+T=P*60*(2*%pi*N)**-1 //Torque transmitted
+
+//M.I
+I=%pi*64**-1*d**4 //mm**4
+
+//Bending stress
+f_A=M*I**-1*(d*2**-1) //N/mm**2
+
+//At A
+p_x=f_A
+p_y=0
+
+//Polar Modulus
+J=%pi*32**-1*d**4 //mm**4
+
+//Shearing stress
+q=T*J**-1*(d*2**-1) //N/mm**2
+
+//Principal Stresses
+P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Bending stress
+p_x2=0
+p_y2=0
+
+//Shearing stress
+q2=T*J**-1*d*2**-1 //N/mm**2
+
+//Principal stresses
+P3=(p_x2+p_y2)*2**-1+(((p_x2-p_y2)*2**-1)**2+q2**2)**0.5 //N/mm**2
+P4=(p_x2+p_y2)*2**-1-(((p_x2-p_y2)*2**-1)**2+q2**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max2=(((p_x2-p_y2)*2**-1)**2+q2**2)**0.5 //N/mm**2
+
+//Answer for Principal Stresses P1,P2 and Max stress i.e q_max is incorrect in Book
+
+//Result
+printf("\n Principal Stresses at vertical Diameter:P1 %0.2f N/mm**2",P1)
+printf("\n :P2 %0.2f N/mm**2",P2)
+printf("\n Max stress at vertical Diameter : %0.2f N/mm**2",q_max)
+printf("\n Principal Stresses at Horizontal Diameter:P3 %0.2f N/mm**2",P3)
+printf("\n :P4 %0.2f N/mm**2",P4)
+printf("\n Max stress at Horizontal Diameter : %0.2f N/mm**2",q_max2)
diff --git a/3864/CH7/EX7.2/Ex7_2.sce b/3864/CH7/EX7.2/Ex7_2.sce
new file mode 100644
index 000000000..8bb052951
--- /dev/null
+++ b/3864/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,29 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=25 //mm //Diameter of circular bar
+F=20*10**3 //N //Axial Force
+theta=30 //Degree //angle
+
+//Calculations
+
+//Axial stresses
+p=F*(%pi*4**-1*d**2)**-1 //N/mm**2
+
+//Normal Stress
+p_n=p*(cos(30*%pi*180**-1))**2
+
+//Tangential Stress
+p_t=p*2**-1*sin(2*theta*%pi*180**-1)
+
+//Max shear stress occurs on plane where theta2=45
+theta2=45
+sigma_max=p*2**-1*sin(2*theta2*%pi*180**-1)
+
+//Result
+printf("\n Stresses developed on a plane making 30 degree is: %0.2f N/mm**2",p_n)
+printf("\n : %0.2f N/mm**2",p_t)
+printf("\n stress on max shear stress is %0.2f N/mm**2",sigma_max)
diff --git a/3864/CH7/EX7.20/Ex7_20.sce b/3864/CH7/EX7.20/Ex7_20.sce
new file mode 100644
index 000000000..a8567c8a7
--- /dev/null
+++ b/3864/CH7/EX7.20/Ex7_20.sce
@@ -0,0 +1,49 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d1=100 //mm //External Diameter
+d2=50 //mm //Internal Diameter
+N=500 //mm //r.p.m
+P=60*10**6 //N-mm/sec //Power
+p=100 //N/mm**2 //principal stress
+
+//Calculations
+
+//M.I
+I=%pi*(d1**4-d2**4)*64**-1 //mm**4
+
+//Bending Stress
+//f=M*I*d1*2**-1 //N/mm**2
+
+//Principal Planes
+//p_x=32*M*(%pi*(d1**4-d2**4))*d1
+//p_y=0
+
+//Shear stress
+//q=T*J**-1*(d1*2**-1)
+//After sub values and further simplifying we get
+//q=16*T*d1*(%pi*(d1**4-d2**4))*d1
+
+//Principal stresses
+//P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+//After sub values and further simplifying we get
+//P1=16*(%pi*(d1**4-d2**4))*d1*(M+(M**2+t**2)**0.5) ...............(1)
+
+//P=2*%pi*N*T*60**-1
+//After sub values and further simplifying we get
+T=P*60*(2*%pi*N)**-1*10**-6 //N-mm
+
+//Again Sub values and further simplifying Equation 1 we get
+M=(337.533)*(36.84)**-1 //KN-m
+
+//Min Principal stress
+//P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+//Sub values and further simplifying we get
+P2=16*(%pi*(d1**4-d2**4))*d1*(M-(M**2+T**2)**0.5)*10**-11
+
+//Result
+printf("\n Bending Moment safely applied to shaft is %0.2f KN-m",M)
+printf("\n Min Principal Stress is %0.3f N/mm**2",P2)
diff --git a/3864/CH7/EX7.21/Ex7_21.sce b/3864/CH7/EX7.21/Ex7_21.sce
new file mode 100644
index 000000000..2f8167ce7
--- /dev/null
+++ b/3864/CH7/EX7.21/Ex7_21.sce
@@ -0,0 +1,59 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=150 //mm //Diameter
+T=20*10**6 //N //Torque
+M=12*10**6 //N-mm //B.M
+F=200*10**3 //N //Axial Thrust
+
+//Calculations
+
+//M.I
+I=(%pi*64**-1*d**4)
+
+//Bending stress
+f_A=M*I**-1*(d*2**-1) //N/mm**2
+f_B=-f_A //N/mm**2
+
+//Axial thrust due to thrust
+sigma=F*(%pi*4**-1*d**2)**-1
+
+//At A
+p_x=f_A-sigma //N/mm**2
+
+//At B
+p_x2=f_B-sigma //N/mm**2
+
+p_y=0 //At A and B
+
+//Polar Modulus
+J=%pi*32**-1*d**4 //mm**4
+
+//Shearing stress at A and B
+q=T*J**-1*(d*2**-1) //N/mm**2
+
+
+//Principal Stresses
+//At A
+P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max1=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//At B
+P1_2=(p_x2+p_y)*2**-1+(((p_x2-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+P2_2=(p_x2+p_y)*2**-1-(((p_x2-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max2=(((p_x2-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+
+//Result
+printf("\n MAx Principal Stresses:P1 %0.2f N/mm**2",P1)
+printf("\n :P2 %0.2f N/mm**2",P2)
+printf("\n Min Principal Stresses:P1_2 %0.2f N/mm**2",P1_2)
+printf("\n :P2_2 %0.2f N/mm**2",P2_2)
diff --git a/3864/CH7/EX7.22/Ex7_22.sce b/3864/CH7/EX7.22/Ex7_22.sce
new file mode 100644
index 000000000..99d992598
--- /dev/null
+++ b/3864/CH7/EX7.22/Ex7_22.sce
@@ -0,0 +1,39 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//strains
+e_A=500 //microns
+e_B=250 //microns
+e_C=-150 //microns
+E=2*10**5 //N/mm**2 //Modulus of Elasticity
+mu=0.3 //Poissons ratio
+theta=45 //Degrees
+
+//Calculations
+e_x=500
+e_A=500
+e_45=250
+e_B=250
+e_y=-150
+e_C=-150
+
+//e_45=(e_x+e_y)*2**-1+(e_x-e_y)*2**-1*cos(2*theta)+rho_x_y*2**-1*sin(2*theta)
+//After sub values and further simplifying we get
+rho_x_y=(e_45-(e_x+e_y)*2**-1-(e_x-e_y)*2**-1*cos(2*theta*%pi*180**-1))*(sin(2*theta*%pi*180**-1))**-1*2
+
+//Principal strains are given by
+e1=(e_x+e_y)*2**-1+(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns
+e2=(e_x+e_y)*2**-1-(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns
+
+//Principal Stresses
+sigma1=E*(e1+mu*e2)*(1-mu**2)**-1*10**-6 //N/mm**2
+sigma2=E*(e2+mu*e1)*(1-mu**2)**-1*10**-6 //N/mm**2
+
+//Result
+printf("\n Principal Strains are:e1 %0.2f N/mm**2",e1)
+printf("\n :e2 %0.2f N/mm**2",e2)
+printf("\n Principal Stresses are:sigma1 %0.2f N/mm**2",sigma1)
+printf("\n :sigma2 %0.2f N/mm**2",sigma2)
diff --git a/3864/CH7/EX7.23/Ex7_23.sce b/3864/CH7/EX7.23/Ex7_23.sce
new file mode 100644
index 000000000..0520404bd
--- /dev/null
+++ b/3864/CH7/EX7.23/Ex7_23.sce
@@ -0,0 +1,47 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Strains
+e_A=600 //microns
+e_B=-450 //microns
+e_C=100 //micron
+E=2*10**5 //N/mm**2 //Modulus of Elasticity
+mu=0.3 //Poissons ratio
+theta=240
+
+//Calculations
+
+e_x=600
+e_A=600
+
+//e_A=(e_x+e_y)*2**-1+(e_x-e_y)*2**-1*cos(theta)+rho_x_y*2**-1*sin(theta)
+//After sub values and further simplifying we get
+//-450=(e_x+e_y)*2**-1-(e_x-e_y)*2**-1*(0.5)-0.866*2**-1*rho_x_y .....................(1)
+
+//e_C=(e_x+e_y)*2**-1+(e_x-e_y)*2**-1*cos(2*theta)+rho_x_y*2**-1*sin(2*theta)
+//After sub values and further simplifying we get
+//100=(e_x+e_y)*2**-1-0.5*(e_x-e_y)*2**-1*(0.5)-0.866*2**-1*rho_x_y .....................(2)
+
+//Adding Equation 1 and 2 we get equations as
+//-350=e_x+e_y-(e_x-e_y)*2**-1 ...............(3)
+//Further simplifying we get
+
+e_y=(-700-e_x)*3**-1 //micron
+
+rho_x_y=(e_C-(e_x+e_y)*2**-1-(e_x-e_y)*2**-1*cos(2*theta*%pi*180**-1))*(sin(2*theta*%pi*180**-1))**-1*2 //micron
+
+//Principal strains
+e1=(e_x+e_y)*2**-1-(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns
+e2=(e_x+e_y)*2**-1+(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns
+
+//Principal Stresses
+sigma1=E*(e1+mu*e2)*(1-mu**2)**-1*10**-6 //N/mm**2
+sigma2=E*(e2+mu*e1)*(1-mu**2)**-1*10**-6 //N/mm**2
+
+
+//Result
+printf("\n Principal Stresses are:sigma1 %0.2f N/mm**2",sigma1)
+printf("\n :sigma2 %0.2f N/mm**2",sigma2)
diff --git a/3864/CH7/EX7.4/Ex7_4.sce b/3864/CH7/EX7.4/Ex7_4.sce
new file mode 100644
index 000000000..20c40bf75
--- /dev/null
+++ b/3864/CH7/EX7.4/Ex7_4.sce
@@ -0,0 +1,29 @@
+clear
+//
+//
+//
+
+//Initilization of Variables
+
+//Direct Stresses
+P1=60 //N/mm**2
+P2=100 //N/mm**2
+
+Theta=25 //Degree //Angle
+
+//Calculations
+
+//Normal Stress
+P_n=(P1-P2)*2**-1+(P1+P2)*2**-1*cos(2*Theta*%pi*180**-1) //N/mm**2
+
+//Tangential Stress
+P_t=(P1+P2)*2**-1*sin(Theta*2*%pi*180**-1) //N/mm**2
+
+//Resultant stress
+P=(P_n**2+P_t**2)**0.5 //N/mm**2
+
+theta2=atan(P_n*P_t**-1)*(180*%pi**-1)
+
+//Result
+printf("\n Stresses on the plane AC is: %0.2f N/mm**2",P_n)
+printf("\n %0.2f N/mm**2",P_t)
diff --git a/3864/CH7/EX7.7/Ex7_7.sce b/3864/CH7/EX7.7/Ex7_7.sce
new file mode 100644
index 000000000..c07f45f71
--- /dev/null
+++ b/3864/CH7/EX7.7/Ex7_7.sce
@@ -0,0 +1,32 @@
+clear
+//
+//
+//
+
+//Initilization of Variables
+
+//stresses
+p_x=60 //N/mm**2
+p_y=-40 //N/mm**2
+
+q=10 //N/mm**2 //shear stress
+
+//Calculations
+
+//Principal Stresses
+p1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+p2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Inclination of principal stress to plane
+theta=atan(2*q*(p_x-p_y)**-1)*(180*%pi**-1)//Degrees
+theta2=(theta)*2**-1 //degrees
+
+theta3=(theta+180)*2**-1 //degrees
+
+//Result
+printf("\n Principal Stresses are: %0.2f N/mm**2",p1)
+printf("\n : %0.2f N/mm**2",p2)
+printf("\n Max shear stresses %0.2f N/mm**2",q_max)
diff --git a/3864/CH7/EX7.9/Ex7_9.sce b/3864/CH7/EX7.9/Ex7_9.sce
new file mode 100644
index 000000000..d272a4ebd
--- /dev/null
+++ b/3864/CH7/EX7.9/Ex7_9.sce
@@ -0,0 +1,42 @@
+clear
+//
+//
+//
+
+//Initilization of Variables
+
+//stresses
+p_x=-40 //N/mm**2
+p_y=80 //N/mm**2
+
+q=48 //N/mm**2 //shear stress
+
+//Calculations
+
+//Max shear stress
+q_max=((((p_x-p_y)*2**-1)**2)+q**2)**0.5 //N/mm**2
+
+//Inclination of principal stress to plane
+theta=atan(2*q*(p_x-p_y)**-1)*(180*%pi**-1)//Degrees
+theta2=(theta)*2**-1 //degrees
+
+theta3=(theta+180)*2**-1 //degrees
+
+//Normal Corresponding stress
+p_n=(p_x+p_y)*2**-1+(p_x-p_y)*2**-1*cos(2*(theta2+45)*%pi*180**-1)+q*sin(2*(theta2+45)*%pi*180**-1) //Degrees
+
+//Resultant stress
+p=((p_n**2+q_max**2)**0.5) //N/mm**2
+
+phi=atan(p_n*q_max**-1)*(180*%pi**-1) //Degrees
+
+//Inclination to the plane
+alpha=((theta2+45))+(phi )//Degree
+
+
+//Answer in book is incorrect of alpha ie41.25
+
+//Result
+printf("\n Planes of max shear stress: %0.2f N/mm**2",p_n)
+printf("\n %0.2f N/mm*2",q_max)
+printf("\n Resultant Stress is %0.2f N/mm**2",p)