diff options
Diffstat (limited to '3864/CH7')
-rw-r--r-- | 3864/CH7/EX7.1/Ex7_1.sce | 35 | ||||
-rw-r--r-- | 3864/CH7/EX7.12/Ex7_12.sce | 30 | ||||
-rw-r--r-- | 3864/CH7/EX7.14/Ex7_14.sce | 40 | ||||
-rw-r--r-- | 3864/CH7/EX7.16/Ex7_16.sce | 54 | ||||
-rw-r--r-- | 3864/CH7/EX7.18/Ex7_18.sce | 26 | ||||
-rw-r--r-- | 3864/CH7/EX7.19/Ex7_19.sce | 64 | ||||
-rw-r--r-- | 3864/CH7/EX7.2/Ex7_2.sce | 29 | ||||
-rw-r--r-- | 3864/CH7/EX7.20/Ex7_20.sce | 49 | ||||
-rw-r--r-- | 3864/CH7/EX7.21/Ex7_21.sce | 59 | ||||
-rw-r--r-- | 3864/CH7/EX7.22/Ex7_22.sce | 39 | ||||
-rw-r--r-- | 3864/CH7/EX7.23/Ex7_23.sce | 47 | ||||
-rw-r--r-- | 3864/CH7/EX7.4/Ex7_4.sce | 29 | ||||
-rw-r--r-- | 3864/CH7/EX7.7/Ex7_7.sce | 32 | ||||
-rw-r--r-- | 3864/CH7/EX7.9/Ex7_9.sce | 42 |
14 files changed, 575 insertions, 0 deletions
diff --git a/3864/CH7/EX7.1/Ex7_1.sce b/3864/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..98d6372db --- /dev/null +++ b/3864/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,35 @@ +clear +// +// + +//Initilization of Variables + +sigma1=30 //N/mm**2 //Stress in tension +d=20 //mm //Diameter +sigma2=90 //N/mm**2 //Max compressive stress +sigma3=25 //N/mm**2 + +//Calculations + +//In TEnsion + +//Corresponding stress in shear +P=sigma1*2**-1 //N/mm**2 + +//Tensile force +F=%pi*4**-1*d**2*sigma1 + +//In Compression + +//Correspong shear stress +P2=sigma2*2**-1 //N/mm**2 + +//Correspong compressive(axial) stress +p=2*sigma3 //N/mm**2 + +//Corresponding Compressive force +P3=p*%pi*4**-1*d**2 //N + +//Result +printf("\n Failure Loads are: %0.2f N",F) +printf("\n : %0.2f N",P3) diff --git a/3864/CH7/EX7.12/Ex7_12.sce b/3864/CH7/EX7.12/Ex7_12.sce new file mode 100644 index 000000000..40bfce331 --- /dev/null +++ b/3864/CH7/EX7.12/Ex7_12.sce @@ -0,0 +1,30 @@ +clear +// +// + +//Initilization of Variables + +//Direct stresses +p_x=120 //N/mm**2 //Tensile stress +p_y=-100 //N/mm**2 //Compressive stress +p1=160 //N/mm**2 //Major principal stress + +//Calculations + +//Let q be the shearing stress + +//p1=(p_x+p_y)*2**-1+((((p_x+p_y)*2**-1)**2)+q**2)**0.5 +//After further simplifying we get +q=(p1-((p_x+p_y)*2**-1))**2-((p_x-p_y)*2**-1)**2 //N/mm**2 +q2=(q)**0.5 //N/mm**2 + +//Minimum Principal stress +p2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q2**2)**0.5 //N/mm**2 + +//Max shearing stress +q_max=(((p_x-p_y)*2**-1)**2+q2**2)**0.5 //N/mm**2 + +//Result +printf("\n Shearing stress of material %0.2f N/mm**2",q) +printf("\n Min Principal stress %0.2f N/mm**2",p2) +printf("\n Max shearing stress %0.2f N/mm**2",q_max) diff --git a/3864/CH7/EX7.14/Ex7_14.sce b/3864/CH7/EX7.14/Ex7_14.sce new file mode 100644 index 000000000..a000a0993 --- /dev/null +++ b/3864/CH7/EX7.14/Ex7_14.sce @@ -0,0 +1,40 @@ +clear +// +// + +//Initilization of Variables + +F=40*10**3 //N //Shear Force +M=20*10**6 //Bending Moment + +//Rectangular section +b=100 //mm //Width +d=200 //mm //Depth + +x=20 //mm //Distance from Top surface upto point +y=80 //mm //Distance from point to Bottom + +//Calculations + +I=1*12**-1*b*d**3 //mm**4 //M.I + +//At 20 mm Below top Fibre +f_x=M*I**-1*y //N/mm**2 //Stress + +//Assuming sagging moment ,f_x is compressive p_x=f_x=-24 //N/mm**2 +f_x=-24 //N/mm**2 +p_x=-24 + +//Shearing stress +q=F*(b*I)**-1*(b*x*(b-x*2**-1)) //N/mm**2 + +//Direct stresses + +p_y=0 //N/mm**2 + +p1=(p_x+p_y)*2**-1+(((p_x+p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 +p2=(p_x+p_y)*2**-1-(((p_x+p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + +//Result +printf("\n Directions of principal stresses at a point below 20mm is: %0.2f N/mm**2",p1) +printf("\n %0.2f N/mm**2",p2) diff --git a/3864/CH7/EX7.16/Ex7_16.sce b/3864/CH7/EX7.16/Ex7_16.sce new file mode 100644 index 000000000..d0f69cf48 --- /dev/null +++ b/3864/CH7/EX7.16/Ex7_16.sce @@ -0,0 +1,54 @@ +clear +// +// + +//Initilization of Variables + +L=8000 //mm //Span of beam +w=40*10**6 //N/mm //udl + +//I-section + +//Flanges +b=100 //mm //Width +t=10 //mm //Thickness + +D=400 //mm //Overall Depth +t2=10 //mm //thickness of web + +//Calculations + +//Let R_A and R_B be the Reactions at A & B respectively +R_A=w*2**-1*L*10**-9 //KN + +//Shear force at 2m for left support +F=R_A-2*w*10**-6 //KN + +//Bending Moment +M=R_A*2-2*w*10**-6 //KN-m + +//M.I +I=1*12**-1*b*D**3-1*12**-1*(b-t)*(D-2*t2)**3 //mm**4 + +//Bending stress at 100 mm above N_A +f=M*10**6*I**-1*b + +//Shear stress +q=F*10**3*(t*I)**-1*(b*t*(D-t)*2**-1 +t2*(b-t2)*145) //N/mm**2 + +p_x=-197.06 //N/mm**2 +p_y=0 //N/mm**2 +q=21.38 //N/mm**2 + +//Principal Stresses + +P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 +P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + +//Max shear stress +q_max=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + +//Result +printf("\n Principal Stresses are: %0.2f N/mm**2",P1) +printf("\n %0.2f N/mm**2",P2) +printf("\n Max shear stress %0.2f N/mm**2",q_max) diff --git a/3864/CH7/EX7.18/Ex7_18.sce b/3864/CH7/EX7.18/Ex7_18.sce new file mode 100644 index 000000000..d2cefbbfc --- /dev/null +++ b/3864/CH7/EX7.18/Ex7_18.sce @@ -0,0 +1,26 @@ +clear +// +// + +//Initilization of Variables + +d=100 //mm //Diameter of shaft +M=3*10**6 //N-mm //B.M +T=6*10**6 //N-mm //Twisting Moment +mu=0.3 + +//Calculations + +//Max principal Stress + +P1=16*(%pi*d**3)**-1*(M+(M**2+T**2)**0.5) //N/mm**2 +P2=16*(%pi*d**3)**-1*(M-(M**2+T**2)**0.5) //N/mm**2 + +//Direct stress +P=(P1)-mu*(P2) //N/mm**2 + + +//Result +printf("\n Principal stresses are: %0.2f N/mm**2",P1) +printf("\n : %0.2f N/mm**2",P2) +printf("\n Stress Producing the same strain is %0.2f N/mm**2",P) diff --git a/3864/CH7/EX7.19/Ex7_19.sce b/3864/CH7/EX7.19/Ex7_19.sce new file mode 100644 index 000000000..63e01c0f3 --- /dev/null +++ b/3864/CH7/EX7.19/Ex7_19.sce @@ -0,0 +1,64 @@ +clear +// +// + +//Initilization of Variables + +d=75 //mm //diameter +P=30*10**6 //W //Power transmitted +W=6 //N-mm/sec //Load +L=1000 //mm +N=300 //r.p.m + +//Calculations + +//B.M +M=W*L*4**-1 //N-mm +T=P*60*(2*%pi*N)**-1 //Torque transmitted + +//M.I +I=%pi*64**-1*d**4 //mm**4 + +//Bending stress +f_A=M*I**-1*(d*2**-1) //N/mm**2 + +//At A +p_x=f_A +p_y=0 + +//Polar Modulus +J=%pi*32**-1*d**4 //mm**4 + +//Shearing stress +q=T*J**-1*(d*2**-1) //N/mm**2 + +//Principal Stresses +P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 +P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + +//Max shear stress +q_max=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + +//Bending stress +p_x2=0 +p_y2=0 + +//Shearing stress +q2=T*J**-1*d*2**-1 //N/mm**2 + +//Principal stresses +P3=(p_x2+p_y2)*2**-1+(((p_x2-p_y2)*2**-1)**2+q2**2)**0.5 //N/mm**2 +P4=(p_x2+p_y2)*2**-1-(((p_x2-p_y2)*2**-1)**2+q2**2)**0.5 //N/mm**2 + +//Max shear stress +q_max2=(((p_x2-p_y2)*2**-1)**2+q2**2)**0.5 //N/mm**2 + +//Answer for Principal Stresses P1,P2 and Max stress i.e q_max is incorrect in Book + +//Result +printf("\n Principal Stresses at vertical Diameter:P1 %0.2f N/mm**2",P1) +printf("\n :P2 %0.2f N/mm**2",P2) +printf("\n Max stress at vertical Diameter : %0.2f N/mm**2",q_max) +printf("\n Principal Stresses at Horizontal Diameter:P3 %0.2f N/mm**2",P3) +printf("\n :P4 %0.2f N/mm**2",P4) +printf("\n Max stress at Horizontal Diameter : %0.2f N/mm**2",q_max2) diff --git a/3864/CH7/EX7.2/Ex7_2.sce b/3864/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..8bb052951 --- /dev/null +++ b/3864/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,29 @@ +clear +// +// + +//Initilization of Variables + +d=25 //mm //Diameter of circular bar +F=20*10**3 //N //Axial Force +theta=30 //Degree //angle + +//Calculations + +//Axial stresses +p=F*(%pi*4**-1*d**2)**-1 //N/mm**2 + +//Normal Stress +p_n=p*(cos(30*%pi*180**-1))**2 + +//Tangential Stress +p_t=p*2**-1*sin(2*theta*%pi*180**-1) + +//Max shear stress occurs on plane where theta2=45 +theta2=45 +sigma_max=p*2**-1*sin(2*theta2*%pi*180**-1) + +//Result +printf("\n Stresses developed on a plane making 30 degree is: %0.2f N/mm**2",p_n) +printf("\n : %0.2f N/mm**2",p_t) +printf("\n stress on max shear stress is %0.2f N/mm**2",sigma_max) diff --git a/3864/CH7/EX7.20/Ex7_20.sce b/3864/CH7/EX7.20/Ex7_20.sce new file mode 100644 index 000000000..a8567c8a7 --- /dev/null +++ b/3864/CH7/EX7.20/Ex7_20.sce @@ -0,0 +1,49 @@ +clear +// +// + +//Initilization of Variables + +d1=100 //mm //External Diameter +d2=50 //mm //Internal Diameter +N=500 //mm //r.p.m +P=60*10**6 //N-mm/sec //Power +p=100 //N/mm**2 //principal stress + +//Calculations + +//M.I +I=%pi*(d1**4-d2**4)*64**-1 //mm**4 + +//Bending Stress +//f=M*I*d1*2**-1 //N/mm**2 + +//Principal Planes +//p_x=32*M*(%pi*(d1**4-d2**4))*d1 +//p_y=0 + +//Shear stress +//q=T*J**-1*(d1*2**-1) +//After sub values and further simplifying we get +//q=16*T*d1*(%pi*(d1**4-d2**4))*d1 + +//Principal stresses +//P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 +//After sub values and further simplifying we get +//P1=16*(%pi*(d1**4-d2**4))*d1*(M+(M**2+t**2)**0.5) ...............(1) + +//P=2*%pi*N*T*60**-1 +//After sub values and further simplifying we get +T=P*60*(2*%pi*N)**-1*10**-6 //N-mm + +//Again Sub values and further simplifying Equation 1 we get +M=(337.533)*(36.84)**-1 //KN-m + +//Min Principal stress +//P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 +//Sub values and further simplifying we get +P2=16*(%pi*(d1**4-d2**4))*d1*(M-(M**2+T**2)**0.5)*10**-11 + +//Result +printf("\n Bending Moment safely applied to shaft is %0.2f KN-m",M) +printf("\n Min Principal Stress is %0.3f N/mm**2",P2) diff --git a/3864/CH7/EX7.21/Ex7_21.sce b/3864/CH7/EX7.21/Ex7_21.sce new file mode 100644 index 000000000..2f8167ce7 --- /dev/null +++ b/3864/CH7/EX7.21/Ex7_21.sce @@ -0,0 +1,59 @@ +clear +// +// + +//Initilization of Variables + +d=150 //mm //Diameter +T=20*10**6 //N //Torque +M=12*10**6 //N-mm //B.M +F=200*10**3 //N //Axial Thrust + +//Calculations + +//M.I +I=(%pi*64**-1*d**4) + +//Bending stress +f_A=M*I**-1*(d*2**-1) //N/mm**2 +f_B=-f_A //N/mm**2 + +//Axial thrust due to thrust +sigma=F*(%pi*4**-1*d**2)**-1 + +//At A +p_x=f_A-sigma //N/mm**2 + +//At B +p_x2=f_B-sigma //N/mm**2 + +p_y=0 //At A and B + +//Polar Modulus +J=%pi*32**-1*d**4 //mm**4 + +//Shearing stress at A and B +q=T*J**-1*(d*2**-1) //N/mm**2 + + +//Principal Stresses +//At A +P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 +P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + +//Max shear stress +q_max1=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + +//At B +P1_2=(p_x2+p_y)*2**-1+(((p_x2-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 +P2_2=(p_x2+p_y)*2**-1-(((p_x2-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + +//Max shear stress +q_max2=(((p_x2-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + + +//Result +printf("\n MAx Principal Stresses:P1 %0.2f N/mm**2",P1) +printf("\n :P2 %0.2f N/mm**2",P2) +printf("\n Min Principal Stresses:P1_2 %0.2f N/mm**2",P1_2) +printf("\n :P2_2 %0.2f N/mm**2",P2_2) diff --git a/3864/CH7/EX7.22/Ex7_22.sce b/3864/CH7/EX7.22/Ex7_22.sce new file mode 100644 index 000000000..99d992598 --- /dev/null +++ b/3864/CH7/EX7.22/Ex7_22.sce @@ -0,0 +1,39 @@ +clear +// +// + +//Initilization of Variables + +//strains +e_A=500 //microns +e_B=250 //microns +e_C=-150 //microns +E=2*10**5 //N/mm**2 //Modulus of Elasticity +mu=0.3 //Poissons ratio +theta=45 //Degrees + +//Calculations +e_x=500 +e_A=500 +e_45=250 +e_B=250 +e_y=-150 +e_C=-150 + +//e_45=(e_x+e_y)*2**-1+(e_x-e_y)*2**-1*cos(2*theta)+rho_x_y*2**-1*sin(2*theta) +//After sub values and further simplifying we get +rho_x_y=(e_45-(e_x+e_y)*2**-1-(e_x-e_y)*2**-1*cos(2*theta*%pi*180**-1))*(sin(2*theta*%pi*180**-1))**-1*2 + +//Principal strains are given by +e1=(e_x+e_y)*2**-1+(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns +e2=(e_x+e_y)*2**-1-(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns + +//Principal Stresses +sigma1=E*(e1+mu*e2)*(1-mu**2)**-1*10**-6 //N/mm**2 +sigma2=E*(e2+mu*e1)*(1-mu**2)**-1*10**-6 //N/mm**2 + +//Result +printf("\n Principal Strains are:e1 %0.2f N/mm**2",e1) +printf("\n :e2 %0.2f N/mm**2",e2) +printf("\n Principal Stresses are:sigma1 %0.2f N/mm**2",sigma1) +printf("\n :sigma2 %0.2f N/mm**2",sigma2) diff --git a/3864/CH7/EX7.23/Ex7_23.sce b/3864/CH7/EX7.23/Ex7_23.sce new file mode 100644 index 000000000..0520404bd --- /dev/null +++ b/3864/CH7/EX7.23/Ex7_23.sce @@ -0,0 +1,47 @@ +clear +// +// + +//Initilization of Variables + +//Strains +e_A=600 //microns +e_B=-450 //microns +e_C=100 //micron +E=2*10**5 //N/mm**2 //Modulus of Elasticity +mu=0.3 //Poissons ratio +theta=240 + +//Calculations + +e_x=600 +e_A=600 + +//e_A=(e_x+e_y)*2**-1+(e_x-e_y)*2**-1*cos(theta)+rho_x_y*2**-1*sin(theta) +//After sub values and further simplifying we get +//-450=(e_x+e_y)*2**-1-(e_x-e_y)*2**-1*(0.5)-0.866*2**-1*rho_x_y .....................(1) + +//e_C=(e_x+e_y)*2**-1+(e_x-e_y)*2**-1*cos(2*theta)+rho_x_y*2**-1*sin(2*theta) +//After sub values and further simplifying we get +//100=(e_x+e_y)*2**-1-0.5*(e_x-e_y)*2**-1*(0.5)-0.866*2**-1*rho_x_y .....................(2) + +//Adding Equation 1 and 2 we get equations as +//-350=e_x+e_y-(e_x-e_y)*2**-1 ...............(3) +//Further simplifying we get + +e_y=(-700-e_x)*3**-1 //micron + +rho_x_y=(e_C-(e_x+e_y)*2**-1-(e_x-e_y)*2**-1*cos(2*theta*%pi*180**-1))*(sin(2*theta*%pi*180**-1))**-1*2 //micron + +//Principal strains +e1=(e_x+e_y)*2**-1-(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns +e2=(e_x+e_y)*2**-1+(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns + +//Principal Stresses +sigma1=E*(e1+mu*e2)*(1-mu**2)**-1*10**-6 //N/mm**2 +sigma2=E*(e2+mu*e1)*(1-mu**2)**-1*10**-6 //N/mm**2 + + +//Result +printf("\n Principal Stresses are:sigma1 %0.2f N/mm**2",sigma1) +printf("\n :sigma2 %0.2f N/mm**2",sigma2) diff --git a/3864/CH7/EX7.4/Ex7_4.sce b/3864/CH7/EX7.4/Ex7_4.sce new file mode 100644 index 000000000..20c40bf75 --- /dev/null +++ b/3864/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,29 @@ +clear +// +// +// + +//Initilization of Variables + +//Direct Stresses +P1=60 //N/mm**2 +P2=100 //N/mm**2 + +Theta=25 //Degree //Angle + +//Calculations + +//Normal Stress +P_n=(P1-P2)*2**-1+(P1+P2)*2**-1*cos(2*Theta*%pi*180**-1) //N/mm**2 + +//Tangential Stress +P_t=(P1+P2)*2**-1*sin(Theta*2*%pi*180**-1) //N/mm**2 + +//Resultant stress +P=(P_n**2+P_t**2)**0.5 //N/mm**2 + +theta2=atan(P_n*P_t**-1)*(180*%pi**-1) + +//Result +printf("\n Stresses on the plane AC is: %0.2f N/mm**2",P_n) +printf("\n %0.2f N/mm**2",P_t) diff --git a/3864/CH7/EX7.7/Ex7_7.sce b/3864/CH7/EX7.7/Ex7_7.sce new file mode 100644 index 000000000..c07f45f71 --- /dev/null +++ b/3864/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,32 @@ +clear +// +// +// + +//Initilization of Variables + +//stresses +p_x=60 //N/mm**2 +p_y=-40 //N/mm**2 + +q=10 //N/mm**2 //shear stress + +//Calculations + +//Principal Stresses +p1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 +p2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + +//Max shear stress +q_max=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2 + +//Inclination of principal stress to plane +theta=atan(2*q*(p_x-p_y)**-1)*(180*%pi**-1)//Degrees +theta2=(theta)*2**-1 //degrees + +theta3=(theta+180)*2**-1 //degrees + +//Result +printf("\n Principal Stresses are: %0.2f N/mm**2",p1) +printf("\n : %0.2f N/mm**2",p2) +printf("\n Max shear stresses %0.2f N/mm**2",q_max) diff --git a/3864/CH7/EX7.9/Ex7_9.sce b/3864/CH7/EX7.9/Ex7_9.sce new file mode 100644 index 000000000..d272a4ebd --- /dev/null +++ b/3864/CH7/EX7.9/Ex7_9.sce @@ -0,0 +1,42 @@ +clear +// +// +// + +//Initilization of Variables + +//stresses +p_x=-40 //N/mm**2 +p_y=80 //N/mm**2 + +q=48 //N/mm**2 //shear stress + +//Calculations + +//Max shear stress +q_max=((((p_x-p_y)*2**-1)**2)+q**2)**0.5 //N/mm**2 + +//Inclination of principal stress to plane +theta=atan(2*q*(p_x-p_y)**-1)*(180*%pi**-1)//Degrees +theta2=(theta)*2**-1 //degrees + +theta3=(theta+180)*2**-1 //degrees + +//Normal Corresponding stress +p_n=(p_x+p_y)*2**-1+(p_x-p_y)*2**-1*cos(2*(theta2+45)*%pi*180**-1)+q*sin(2*(theta2+45)*%pi*180**-1) //Degrees + +//Resultant stress +p=((p_n**2+q_max**2)**0.5) //N/mm**2 + +phi=atan(p_n*q_max**-1)*(180*%pi**-1) //Degrees + +//Inclination to the plane +alpha=((theta2+45))+(phi )//Degree + + +//Answer in book is incorrect of alpha ie41.25 + +//Result +printf("\n Planes of max shear stress: %0.2f N/mm**2",p_n) +printf("\n %0.2f N/mm*2",q_max) +printf("\n Resultant Stress is %0.2f N/mm**2",p) |