summaryrefslogtreecommitdiff
path: root/3864/CH2
diff options
context:
space:
mode:
Diffstat (limited to '3864/CH2')
-rw-r--r--3864/CH2/EX2.1/Ex2_1.sce21
-rw-r--r--3864/CH2/EX2.11/Ex2_11.sce26
-rw-r--r--3864/CH2/EX2.12/Ex2_12.sce29
-rw-r--r--3864/CH2/EX2.14/Ex2_14.sce51
-rw-r--r--3864/CH2/EX2.15/Ex2_15.sce71
-rw-r--r--3864/CH2/EX2.2/Ex2_2.sce19
-rw-r--r--3864/CH2/EX2.20/Ex2_20.sce56
-rw-r--r--3864/CH2/EX2.21/Ex2_21.sce52
-rw-r--r--3864/CH2/EX2.22/Ex2_22.sce39
-rw-r--r--3864/CH2/EX2.23/Ex2_23.sce43
-rw-r--r--3864/CH2/EX2.24/Ex2_24.sce39
-rw-r--r--3864/CH2/EX2.25/Ex2_25.sce56
-rw-r--r--3864/CH2/EX2.26/Ex2_26.sce38
-rw-r--r--3864/CH2/EX2.27/Ex2_27.sce42
-rw-r--r--3864/CH2/EX2.28/Ex2_28.sce29
-rw-r--r--3864/CH2/EX2.3/Ex2_3.sce25
-rw-r--r--3864/CH2/EX2.30/Ex2_30.sce35
-rw-r--r--3864/CH2/EX2.31/Ex2_31.sce26
-rw-r--r--3864/CH2/EX2.33/Ex2_33.sce50
-rw-r--r--3864/CH2/EX2.34/Ex2_34.sce45
-rw-r--r--3864/CH2/EX2.35/Ex2_35.sce72
-rw-r--r--3864/CH2/EX2.36/Ex2_36.sce36
-rw-r--r--3864/CH2/EX2.37/Ex2_37.sce36
-rw-r--r--3864/CH2/EX2.38/Ex2_38.sce38
-rw-r--r--3864/CH2/EX2.39/Ex2_39.sce36
-rw-r--r--3864/CH2/EX2.4/Ex2_4.sce39
-rw-r--r--3864/CH2/EX2.41/Ex2_41.sce21
-rw-r--r--3864/CH2/EX2.42/Ex2_42.sce20
-rw-r--r--3864/CH2/EX2.43/Ex2_43.sce82
-rw-r--r--3864/CH2/EX2.44/Ex2_44.sce32
-rw-r--r--3864/CH2/EX2.45/Ex2_45.sce66
-rw-r--r--3864/CH2/EX2.46/Ex2_46.sce34
-rw-r--r--3864/CH2/EX2.47/Ex2_47.sce44
-rw-r--r--3864/CH2/EX2.48/Ex2_48.sce35
-rw-r--r--3864/CH2/EX2.49/Ex2_49.sce63
-rw-r--r--3864/CH2/EX2.6/Ex2_6.sce21
-rw-r--r--3864/CH2/EX2.7/Ex2_7.sce27
-rw-r--r--3864/CH2/EX2.8/Ex2_8.sce25
38 files changed, 1519 insertions, 0 deletions
diff --git a/3864/CH2/EX2.1/Ex2_1.sce b/3864/CH2/EX2.1/Ex2_1.sce
new file mode 100644
index 000000000..573580d97
--- /dev/null
+++ b/3864/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,21 @@
+clear
+//
+//
+
+//Initilization of Variables
+P=45*10**3 //N //Load
+E=200*10**3 //N/mm**2 //Modulus of elasticity of rod
+L=500 //mm //Length of rod
+d=20 //mm //Diameter of rod
+
+//Calculations
+
+A=%pi*d**2*4**-1 //mm**2 //Area of circular rod
+p=P*A**-1 //N/mm**2 //stress
+e=p*E**-1 //strain
+dell_l=(P*L)*(A*E)**-1
+
+//Result
+printf("\n The stress in bar due to Load is %0.5f N/mm",p)
+printf("\n The strain in bar due to Load is %0.5f N/mm",e)
+printf("\n The Elongation in bar due to Load is %0.2f mm",dell_l)
diff --git a/3864/CH2/EX2.11/Ex2_11.sce b/3864/CH2/EX2.11/Ex2_11.sce
new file mode 100644
index 000000000..e3deff5c9
--- /dev/null
+++ b/3864/CH2/EX2.11/Ex2_11.sce
@@ -0,0 +1,26 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+t=10 //mm //Thickness of steel
+b1=60 //mm //width of plate1
+b2=40 //mm //width of plate2
+P=60*10**3 //Load
+L=600 //mm //Length of plate
+E=2*10**5 //N/mm**2
+
+//Calculations
+
+//Extension of taperong bar of rectangular section
+dell_l=P*L*(t*E*(b1-b2))**-1*log(b1*b2**-1)
+
+A_av=(b1*t+b2*t)*2**-1 //Average Area //mm**2
+dell_l2=P*L*(A_av*E)**-1
+
+//PErcentage Error
+e=(dell_l-dell_l2)*(dell_l)**-1*100
+
+//Result
+printf("\n The Percentage Error is %0.2f ",e)
diff --git a/3864/CH2/EX2.12/Ex2_12.sce b/3864/CH2/EX2.12/Ex2_12.sce
new file mode 100644
index 000000000..acb225448
--- /dev/null
+++ b/3864/CH2/EX2.12/Ex2_12.sce
@@ -0,0 +1,29 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=1.5 //m //Length of steel bar
+L1=1000 //m0 //Length of steel bar 1
+L2=500 //m //Length of steel bar 2
+d1=40 //Diameter of steel bar 1
+d2=20 //diameter of steel bar 2
+E=2*10**5 //N/mm**2 //Modulus of Elasticity
+P=160*10**3 //N //Load
+
+//Calculations
+
+A1=%pi*4**-1*d1**2 //Area of Portion 1
+
+//Extension of uniform Portion 1
+dell_l1=P*L1*(A1*E)**-1 //mm
+
+//Extension of uniform Portion 2
+dell_l2=4*P*L2*(%pi*d1*d2*E)**-1 //mm
+
+//Total Extension of Bar
+dell_l=dell_l1+dell_l2
+
+//Result
+printf("\n The Elongation of the Bar is %0.2f mm",dell_l)
diff --git a/3864/CH2/EX2.14/Ex2_14.sce b/3864/CH2/EX2.14/Ex2_14.sce
new file mode 100644
index 000000000..b654e813d
--- /dev/null
+++ b/3864/CH2/EX2.14/Ex2_14.sce
@@ -0,0 +1,51 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Portion AB
+L_AB=600 //mm //Length of AB
+A_AB=40*40 //mm**2 //Cross-section Area of AB
+
+//Portion BC
+L_BC=800 //mm //Length of BC
+A_BC=30*30 //mm //Length of BC
+
+//Portion CD
+L_CD=1000 //mm //Length of CD
+A_CD=20*20 //mm //Area of CD
+
+P1=80*10**3 //N //Load1
+P2=60*10**3 //N //Load2
+P3=40*10**3 //N //Load3
+
+E=2*10**5 //Modulus of Elasticity
+
+//Calculations
+
+P4=P1-P2+P3 //Load4
+
+//Now Force in AB
+F_AB=P1
+
+//Force in BC
+F_BC=P1-P2
+
+//Force in CD
+F_CD=P4
+
+//Extension of AB
+dell_l_AB=F_AB*L_AB*(A_AB*E)**-1
+
+//Extension of BC
+dell_l_BC=F_BC*L_BC*(A_BC*E)**-1
+
+//Extension of CD
+dell_l_CD=F_CD*L_CD*(A_CD*E)**-1
+
+//Total Extension
+dell_l=dell_l_AB+dell_l_BC+dell_l_CD
+
+//Result
+printf("\n The Total Extension in Bar is %0.2f mm",dell_l)
diff --git a/3864/CH2/EX2.15/Ex2_15.sce b/3864/CH2/EX2.15/Ex2_15.sce
new file mode 100644
index 000000000..e93ab1cf5
--- /dev/null
+++ b/3864/CH2/EX2.15/Ex2_15.sce
@@ -0,0 +1,71 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=800 //mm //Length of bar
+F1=30*10**3 //N //Force acting on the bar
+F2=60*10**3 //N //force acting on the bar
+L=800 //mm //Length of bar
+d=25 //mm //diameter of bar
+L_AC=275 //mm //Length of AC
+L_CD=150 //mm //Length of CD
+L_DB=375 //mm //Length of DB
+E=2*10**5 //Pa //Modulus of elasticity
+
+//Calculations
+
+//Let P be the Reaction on tne Bar from support at A
+
+//Shortening of Portion AC
+//dell_l_AC1=P*L_AC*(A*E)**-1
+
+//Shortening of Portion CD
+//dell_l_CD1=(30+P)*L_CD*(A*E)**-1
+
+//Extension of Portion DB
+//dell_l_DB1=(30-P)*L_DB*(A*E)**-1
+
+//Total Extensions=1*(A*E)**-1*(P*L_AC-(30+P)*L_CD+(30-P)*L_DB)
+//As Supports are unyielding,Total Extensions=0
+
+//After substituting values in above equation and Further simplifying we get
+P=(30*375-150*30)*800**-1
+
+//Reaction of support A
+R_A=P
+
+//Reaction of support B
+R_B=30-P
+
+//Cross-sectional Area
+A=%pi*4**-1*d**2
+
+//Stress in Portion AC
+sigma1=P*10**3*A**-1 //N/mm**2
+
+//Stress in Portion CD
+sigma2=(30+P)*10**3*A**-1 //N/mm**2
+
+//Stress in Portion DB
+sigma3=(30-P)*10**3*A**-1 //N/mm**2
+
+//Shortening of Portion AC
+dell_l_AC2=P*10**3*L_AC*(A*E)**-1 //mm
+
+//Shortening of Portion CD
+dell_l_CD2=(30+P)*10**3*L_CD*(A*E)**-1 //mm
+
+//Extension of Portion DB
+dell_l_DB2=(30-P)*10**3*L_DB*(A*E)**-1 //mm
+
+//result
+printf("\n The Reactios at two Ends are:R_A %0.2f KN",R_A)
+printf("\n :R_B %0.2f KN",R_B)
+printf("\n Stress in Portion AC %0.2f N/mm**2",sigma1)
+printf("\n Stress in Portion CD %0.2f N/mm**2",sigma2)
+printf("\n Stress in Portion DB %0.2f N/mm**2",sigma3)
+printf("\n Shortening of Portion AC %0.3f mm",dell_l_AC2)
+printf("\n Shortening of Portion CD %0.3f mm",dell_l_CD2)
+printf("\n Shortening of Portion DB %0.3f mm",dell_l_DB2)
diff --git a/3864/CH2/EX2.2/Ex2_2.sce b/3864/CH2/EX2.2/Ex2_2.sce
new file mode 100644
index 000000000..b255a81fa
--- /dev/null
+++ b/3864/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,19 @@
+clear
+//
+
+//Initilization of Variables
+
+A=15*0.75 //mm**2 //area of steel tape
+P=100 //N //Force apllied
+L=30*10**3 //mm //Length of tape
+E=200*10**3 //N/m**2 //Modulus of Elasticity of steel tape
+AB=150 //m //Measurement of Line AB
+
+//Calculations
+
+dell_l=P*L*(A*E)**-1 //mm //Elongation
+l=L+dell_l*10**-3 //mm //Actual Length
+AB1=AB*l*L**-1 //m Actual Length of AB
+
+//Result
+printf("\n The Actual Length of Line AB is %0.2f m",AB1)
diff --git a/3864/CH2/EX2.20/Ex2_20.sce b/3864/CH2/EX2.20/Ex2_20.sce
new file mode 100644
index 000000000..9d5785310
--- /dev/null
+++ b/3864/CH2/EX2.20/Ex2_20.sce
@@ -0,0 +1,56 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+sigma=150 //N/mm**2 //Stress
+P=40*10**3 //N //Load
+
+//Calculations
+
+//LEt P_A.P_B,P_C,P_D be the forces developed in wires A,B,C,D respectively
+
+//Let sum of all Vertical Forces=0
+//P_A+P_B+P_C+P_D=40 ..........................(1)
+
+//Let x be the distance between each wires
+//sum of all moments=0
+//P_B*x+P_C*2*x+P_D*3*x=40*2*x
+
+//After further simplifying we get
+//P_B+2*P_C+3*P_D=80 ..........................(2)
+
+//As the equations of statics ae not enough to find unknowns,Consider compatibilit Equations
+
+//Let dell_l be the increse in elongation of wire
+
+//dell_l_B=dell_l_A+dell_l
+//dell_l_C=dell_l_A+2*dell_l
+//dell_l_D=dell_l_A+3*dell_l
+
+//Let P1 be the force required for the Elongation of wires,then
+//P_B=P_A+P1 ]
+//P_C=P_A+2*P1 ]
+//P_D=P_A+3*P1 ] ................................(3)
+
+//from Equation (3) and (1) we get
+//2*P_A+3*P1=20 ................................(4)
+
+//from Equation (3) and (2) we get
+//6*P_A+14*P1=80
+
+//subtracting 3 times equation (4) from (3) we get
+P1=20*5**-1
+
+//from Equation 4 we get
+P_A=(80-14*P1)*6**-1
+P_B=P_A+P1
+P_C=P_A+2*P1
+P_D=P_A+3*P1
+
+//Let d be the diameter required,then
+d=(P_D*10**3*4*(%pi*150)**-1)**0.5
+
+//result
+printf("\n The Required Diameter is %0.2f mm",d)
diff --git a/3864/CH2/EX2.21/Ex2_21.sce b/3864/CH2/EX2.21/Ex2_21.sce
new file mode 100644
index 000000000..678fe0d54
--- /dev/null
+++ b/3864/CH2/EX2.21/Ex2_21.sce
@@ -0,0 +1,52 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P=20*10**3 //N //Load
+d=6 //mm //diameter of wire
+E=2*10**5 //N/mm**2
+L_BO=4000 //mm //Length of BO
+
+//Calculations
+
+//Let theta be the angle between OA and OB and also between OC and OB
+theta=30
+
+//Let P_OA,P_OB,P_OC be the Forces introduced in wires OA,OB,OC respectively
+//Due to symmetry P_OA=P_OC (same angles)
+
+//Sum of all Vertical Forces=0
+//P_OA*cos(theta)+P_OB+P_OC*cos(theta)=P
+
+//After further simplifyinf we get
+//2*P_OA*cos(theta)+P_OB=20 ...............(1)
+
+//Let oo1 be the extension of BO
+//oo1=L_A1o1*(cos(theta))**-1
+
+//From relation we get
+//P_OB*L_BO=P_OA*L_AO*(cos(theta))**-1
+
+//But L_AO=L_BO*(cos(theta))**-1
+
+//After substituting value of L_AO in above equation we get
+//P_OB=0.75*P_OA .......................(2)
+
+//substituting in Equation 1 we get
+//2*P_OA*cos(theta)+0.75*P_OA=20
+
+P_OA=20*(2*cos(theta*%pi*180**-1)+0.75)**-1
+
+P_OB=0.75*P_OA
+
+A=%pi*4**-1*d**2
+
+//Vertical displacement of Load
+dell_l_BO=P_OB*10**3*L_BO*(A*E)**-1
+
+//Result
+printf("\n Forces in each wire is:P_OA %0.2f KN",P_OA)
+printf("\n :P_OB %0.2f KN",P_OB)
+printf("\n Vertical displacement of Loadis %0.2f mm",dell_l_BO)
diff --git a/3864/CH2/EX2.22/Ex2_22.sce b/3864/CH2/EX2.22/Ex2_22.sce
new file mode 100644
index 000000000..0949e768e
--- /dev/null
+++ b/3864/CH2/EX2.22/Ex2_22.sce
@@ -0,0 +1,39 @@
+clear
+//
+
+//Initilization of Variables
+
+A_a=50*20 //mm //Area of aluminium strip
+A_s=50*15 //mm //Area of steel strip
+P=50*10**3 //N //Load
+E_a=1*10**5 //N/mm**2 //Modulus of aluminium
+E_s=2*10**5 //N/mm**2 //Modulus of steel
+
+//Calculations
+
+//Let P_a and P_s br the Load shared by aluminium and steel strip
+//P_a+P_s=P ..................(1)
+
+//For compatibility condition,dell_l_a=dell_l_s
+//P_a*L_a*(A_a*E_a)**-1=P_s*L_s*(A_s*E_s)**-1 .....(2)
+
+//As L_a=L_s we get
+//P_s=1.5*P_a .................(3)
+
+//From Equation 1 and 2 we get
+P_a=P*2.5**-1
+
+//Substituting in equation 1 we get
+P_s=P-P_a
+
+//stress in aluminium strip
+sigma_a=P_a*A_a**-1
+
+//stress in steel strip
+sigma_s=P_s*A_s**-1
+
+//Now from the relation we get
+
+//result
+printf("\n Stress in Aluminium strip is %0.2f N/mm**2",sigma_a)
+printf("\n Stress in steel strip is %0.2f N/mm**2",sigma_s)
diff --git a/3864/CH2/EX2.23/Ex2_23.sce b/3864/CH2/EX2.23/Ex2_23.sce
new file mode 100644
index 000000000..b1ee4ddd9
--- /dev/null
+++ b/3864/CH2/EX2.23/Ex2_23.sce
@@ -0,0 +1,43 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D_s=20 //mm //Diameter of steel
+D_Ci=20 //mm //Internal Diameter of Copper
+t=5 //mm //THickness of copper bar
+P=100*10**3 //N //Load
+E_s=2*10**5 //N/mm**2 //modulus of elasticity of steel
+E_c=1.2*10**5 //N/mm**2 //Modulus of Elasticity of Copper
+
+//Calculations
+
+A_s=%pi*4**-1*D_s**2 //mm**2 //Area of steel
+D_Ce=D_s+2*t //mm //External Diameterof Copper Tube
+
+A_c=%pi*4**-1*(D_Ce**2-D_Ci**2) //mm**2 //Area of Copper
+
+//From static Equilibrium condition
+//Let P_s and P_c be the Load shared by steel and copper in KN
+//P_s+P_c=100 ....................................(1)
+
+//From compatibility Equation,dell_l_s=dell_l_c
+//P_s*L*(A_s*E_s)**-1=P_c*L*(A_c*E_c)**-1
+
+//Substituting values in above Equation we get
+//P_s=1.3333*P_C
+
+//Now Substituting value of P_s in Equation (1),we get
+P_c=100*2.3333**-1 //KN
+P_s=100-P_c //KN
+
+//Stress in steel
+sigma_s=P_s*10**3*A_s**-1 //N/mm**2
+
+//Stress in copper
+sigma_c=P_c*10**3*A_c**-1 //N/mm**2
+
+//Result
+printf("\n Stresses Developed in Two material are:sigma_s %0.2f N/mm**2",sigma_s)
+printf("\n :sigma_c %0.2f N/mm**2",sigma_c)
diff --git a/3864/CH2/EX2.24/Ex2_24.sce b/3864/CH2/EX2.24/Ex2_24.sce
new file mode 100644
index 000000000..b75582839
--- /dev/null
+++ b/3864/CH2/EX2.24/Ex2_24.sce
@@ -0,0 +1,39 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+A_C=230*400 //mm //Area of column
+D_s=12 //mm //Diameter of steel Bar
+P=600*10**3 //N //Axial compression
+//E_s*E_c=18.67
+n=8 //number of steel Bars
+
+//Calculations
+
+A_s=%pi*4**-1*D_s**2*n //Area of steel //mm**2
+A_c=A_C-A_s //mm**2 //Area of concrete
+
+//From static Equilibrium condition
+//P_s+P_c=600 .........(1)
+
+//Now from compatibility Equation dell_l_s=dell_l_c we get,
+//P_s*L*(A_s*E_s)**-1=P_c*L*(A_c*E_c)**-1
+
+//Substituting values in above Equation we get
+//P_s=0.1854*P_c
+
+//Now Substituting value of P_s in Equation (1),we get
+P_c=600*1.1854**-1
+P_s=600-P_c
+
+//Stress in steel
+sigma_s=P_s*10**3*A_s**-1 //N/mm**2
+
+//Stress in copper
+sigma_c=P_c*10**3*A_c**-1 //N/mm**2
+
+//Result
+printf("\n Stresses Developed in Two material are:sigma_s %0.2f N/mm**2",sigma_s)
+printf("\n :sigma_c %0.2f N/mm**2",sigma_c)
diff --git a/3864/CH2/EX2.25/Ex2_25.sce b/3864/CH2/EX2.25/Ex2_25.sce
new file mode 100644
index 000000000..8b3b0923d
--- /dev/null
+++ b/3864/CH2/EX2.25/Ex2_25.sce
@@ -0,0 +1,56 @@
+clear
+//
+
+//Initilization of Variables
+
+P=200*10**3 //N //Load
+A_a=1000 //mm**2 //Area of Aluminium
+A_s=800 //mm**2 //Area of steel
+E_a=1*10**5 //N/mm**2 //Modulus of Elasticity of Aluminium
+E_s=2*10**5 //N/mm**2 //Modulus of ELasticity of steel
+sigma_a1=65 //N/mm**2 //stress in aluminium
+sigma_s1=150 //N/mm**2 //Stress in steel
+
+//Calculations
+
+//Let P_a and P_s be the force in aluminium and steel pillar respectively
+
+//Now,sum of forces in Vertical direction we get
+//2*P_a+P_s=200 .........................................(1)
+
+//By compatibility Equation dell_l_s=dell_l_a we get
+//P_s=1.28*P_a ..........................................(2)
+
+//Now substituting value of P_s in Equation 1 we get
+P_a=200*3.28**-1 //KN
+P_s=200-2*P_a //KN
+
+//Stress developed in aluminium
+sigma_a=P_a*10**3*A_a**-1 //N/mm**2
+
+//Stress developed in steel
+sigma_s=P_s*10**3*A_s**-1 //N/mm**2
+
+//Part-2
+
+//Let sigma_a1 and sigma_s1 be the stresses in Aluminium and steel due to Additional LOad
+
+P_a1=sigma_a1*A_a //Load carrying capacity of aluminium
+P_s1=1.28*P_a1
+
+//Total Load carrying capacity
+P1=2*P_a1+P_s1 //N
+
+P_s2=sigma_s1*A_s //Load carrying capacity of steel
+P_a2=P_s2*1.28**-1
+
+//Total Load carrying capacity
+P2=2*P_a2+P_s2
+
+//Additional Load
+P3=P1-P
+
+//Result
+printf("\n Stresses Developed in Each Pillar is:sigma_a %0.2f N/mm**2",sigma_a)
+printf("\n :sigma_s %0.2f N/mm**2",sigma_s)
+printf("\n Additional Load taken by pillars is %0.2f N",P3)
diff --git a/3864/CH2/EX2.26/Ex2_26.sce b/3864/CH2/EX2.26/Ex2_26.sce
new file mode 100644
index 000000000..448652caf
--- /dev/null
+++ b/3864/CH2/EX2.26/Ex2_26.sce
@@ -0,0 +1,38 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=500 //mm //Length of assembly
+D=16 //mm //Diameter of steel bolt
+Di=20 //mm //internal Diameter of copper tube
+Do=30 //mm //External Diameter of copper tube
+E_s=2*10**5 //N/mm**2 //Modulus of Elasticity of steel
+E_c=1.2*10**5 //N/mm**2 //Modulus of Elasticity of copper
+p=2 //mm //Pitch of nut
+
+//Calculations
+
+//Let P_s be the Force in bolt and P_c be the FOrce in copper tube
+//P_s=-P_s
+
+dell=1*4**-1*2 //Quarter turn of nut total movement
+
+//dell=dell_s+dell_c
+
+//Area of steel
+A_s=%pi*4**-1*D**2
+
+//Area of copper
+A_c=%pi*4**-1*(Do**2-Di**2)
+
+//dell=P*L*(A_s*E_s)**-1+P*L*(A_c*E_c)**-1
+P=dell*(1*(A_s*E_s)**-1+1*(A_c*E_c)**-1)**-1*L**-1 //LOad
+
+P_s=P*A_s**-1
+P_c=P*A_c**-1
+
+//result
+printf("\n stress introduced in bolt is %0.2f N/mm**2",P_s)
+printf("\n stress introduced in tube is %0.2f N/mm**2",P_c)
diff --git a/3864/CH2/EX2.27/Ex2_27.sce b/3864/CH2/EX2.27/Ex2_27.sce
new file mode 100644
index 000000000..d02f8430d
--- /dev/null
+++ b/3864/CH2/EX2.27/Ex2_27.sce
@@ -0,0 +1,42 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D=20 //mm //Diameter of Bolts
+Di=25 //m //internal Diameter
+t=10 //mm //Thickness of bolt
+E_s=2*10**5 //N/mm**2 //Modulus of Elasticity
+E_c=1.2*10**5 //N/mm**2 //Modulus of copper
+p=3 //mm //Pitch
+theta=30 //degree
+L_c=500 //Lengh of copper
+L_s=600 //Length of steel
+
+//Calculations
+
+//Let P_s be the Force in each bolt and P_c be the FOrce in copper tube
+//From Static Equilibrium condition
+//P_c=2*P_s
+
+//As nut moves by 60 degree.If nut moves by 360 degree its Longitudinal movement is by 3 mm
+dell=theta*360**-1*p
+
+//From Compatibility Equaton we get
+//dell=dell_c+dell_s
+
+
+A_s=%pi*4**-1*Di**2 //mm**2 //Area of steel
+A_c=%pi*4**-1*(45**2-Di**2) //mm**2 //Area of copper
+
+//Force introduced in steel
+P_s=0.5*(2*L_c*(A_c*E_c)**-1+L_s*(A_s*E_s)**-1)**-1 //N
+P_s2=P_s*A_s**-1
+
+//Force introduced in copper
+P_c=2*P_s*A_c**-1 //N
+
+//Result
+printf("\n Stress introduced in bolt is %0.2f N/mm**2",P_s2)
+printf("\n stress introduced in tube is %0.2f N/mm**2",P_c)
diff --git a/3864/CH2/EX2.28/Ex2_28.sce b/3864/CH2/EX2.28/Ex2_28.sce
new file mode 100644
index 000000000..a89771447
--- /dev/null
+++ b/3864/CH2/EX2.28/Ex2_28.sce
@@ -0,0 +1,29 @@
+clear
+//
+
+//Initilization of Variables
+
+L=9 //m //Length of rigid bar
+L_b=3000 //Length of bar
+A_b=1000 //mm**2 //Area of bar
+E_b=1*10**5 //N/mm**2 //Modulus of Elasticity of brasss bar
+L_s=5000 //mm //Length of steel bar
+A_s=445 //mm**2 //Area of steel bar
+E_s=2*10**5 //N/mm**2 //Modulus of elasticity of steel bar
+P=3000 //N //Load
+
+//Calculations
+
+//From static equilibrium Equation of the rod after appliying Load is
+//P_b+P_s=P ......................(1)
+
+//P_b=1.8727*P_s ..................(2)
+
+//NOw substituting equation 2 in equation 1 we get
+P_s=P*2.8727**-1
+P_b=P-P_s
+
+d=P_s*L*P**-1
+
+//Result
+printf("\n Distance at which Load applied even after which bar remains horizontal is %0.2f m",d)
diff --git a/3864/CH2/EX2.3/Ex2_3.sce b/3864/CH2/EX2.3/Ex2_3.sce
new file mode 100644
index 000000000..9ef330004
--- /dev/null
+++ b/3864/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,25 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Let y be the yield stress
+
+y=250 //N/mm**2 //yield stress
+FOS=1.75 //Factor of safety
+P=140*10**3 //N //compressive Load
+D=101.6 //mm //External diameter
+
+//Calculations
+
+p=y*(FOS)**-1 //N/mm**2 //Permissible stress
+A=P*p**-1 //mm**2 //Area of hollow tube
+
+//Let d be the internal diameter of tube
+d=-((A*4*(%pi)**-1)-D**2)
+X=d**0.5
+t=(D-X)*2**-1 //mm //Thickness of steel tube
+
+//result
+printf("\n The thickness of steel tube is %0.2f mm",t)
diff --git a/3864/CH2/EX2.30/Ex2_30.sce b/3864/CH2/EX2.30/Ex2_30.sce
new file mode 100644
index 000000000..494f7c86a
--- /dev/null
+++ b/3864/CH2/EX2.30/Ex2_30.sce
@@ -0,0 +1,35 @@
+clear
+//
+
+//Initilization of Variables
+
+L=12.6 //m //Length of rail
+t1=24 //Degree celsius
+t2=44 //degree celsius
+alpha=12*10**-6 //Per degree celsius
+E=2*10**5 //N/mm**2 //Modulus of ELasticity
+gamma=2 //mm //Gap provided for Expansion
+sigma=20 //N/mm**2 //Stress
+
+//Calculations
+
+t=t2-t1 //Temperature Difference
+
+//Free Expansion of the rails
+dell=alpha*t*L*1000 //mm
+
+//When no expansion joint is provided then
+p=dell*E*(L*10**3)**-1
+
+//When a gap of 2 mm is provided,then free expansion prevented is
+dell_1=dell-gamma
+p2=dell_1*E*(L*10**3)**-1
+
+//When stress is developed,then gap left is
+gamma2=-(sigma*L*10**3*E**-1-dell)
+
+//Result
+printf("\n The minimum gap between the two rails is %0.2f mm",dell)
+printf("\n Thermal Developed in the rials if:No expansionn joint is provided:p %0.2f N/mm**2",p)
+printf("\n :If a gap of is provided then :p2 %0.2f N/mm**2",p2)
+printf("\n When stress is developed gap left between the rails is %0.2f mm",gamma2)
diff --git a/3864/CH2/EX2.31/Ex2_31.sce b/3864/CH2/EX2.31/Ex2_31.sce
new file mode 100644
index 000000000..8a95fa359
--- /dev/null
+++ b/3864/CH2/EX2.31/Ex2_31.sce
@@ -0,0 +1,26 @@
+clear
+//
+
+//Initilization of Variables
+
+t=20 //degree celsius
+E_a=70*10**9 //N/mm**2 //Modulus of Elasticicty of aluminium
+alpha_a=11*10**-6 //per degree celsius //Temperature coeff of aluminium
+alpha_s=12*10**-6 //Per degree celsius //Temperature coeff of steel
+L_a=1000 //mm //Length of aluminium
+L_s=3000 //mm //Length of steel
+E_a=7*10**4 //N/mm**2 //Modulus of Elasticity of aluminium
+E_s=2*10**5 //N/mm*2 //Modulus of Elasticity of steel
+A_a=600 //mm**2 //Area of aluminium
+A_s=300 //mm**2 //Area of steel
+
+//Calculations
+
+//Free Expansion
+dell=alpha_a*t*L_a+alpha_s*t*L_s
+
+//support Reaction
+P=dell*(L_a*(A_a*E_a)**-1+L_s*(A_s*E_s)**-1)**-1
+
+//Result
+printf("\n Reaction at support is %0.2f N",P)
diff --git a/3864/CH2/EX2.33/Ex2_33.sce b/3864/CH2/EX2.33/Ex2_33.sce
new file mode 100644
index 000000000..4baa8d7d1
--- /dev/null
+++ b/3864/CH2/EX2.33/Ex2_33.sce
@@ -0,0 +1,50 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D=25 //mm //Diameter of Brass
+De=50 //mm //External Diameter of steel tube
+Di=25 //mm //Internal Diameter of steel tube
+L=1.5 //m //Length of both bars
+t1=30 //degree celsius //Initial Temperature
+t2=100 //degree celsius //final Temperature
+E_s=2*10**5 //N/mm**2 //Modulus of ELasticity of steel bar
+E_b=1*10**5 //N/mm**2 //Modulus of Elasticity of brass bar
+alpha_s=11.6*10**-6 //Temperature Coeff of steel
+alpha_b=18.7*10**-6 //Temperature coeff of brass bar
+d=20 //mm //diameter of pins
+
+//Calculations
+
+t=t2-t1 //Temperature Difference
+A_s=%pi*4**-1*(De**2-Di**2) //mm**2 //Area of steel
+A_b=%pi*4**-1*D**2 //mm**2 //Area of brass
+
+//Let P_b be the tensile force in brass bar and P_s be the compressive force in steel bar
+//But from Equilibrium of Forces
+//P_b=P_s=P
+
+//Let dell=dell_s+dell_b
+dell=(alpha_b-alpha_s)*t*L*1000
+
+P=dell*(1*(A_s*E_s)**-1+1*(A_b*E_b)**-1)**-1*(L*1000)**-1
+P_b=P
+P_s=P
+//Stress in steel
+sigma_s=P*A_s**-1
+
+//Stress in Brass
+sigma_b=P_b*A_b**-1
+
+//Area of Pins
+A_p=%pi*4**-1*d**2
+
+//Since,the force is resisted by two cross section of pins
+tou=P*(2*A_p)**-1
+
+//Result
+printf("\n Stress in steel bar is %0.2f N/mm**2",sigma_s)
+printf("\n Stress in Brass bar is %0.2f N/mm**2",sigma_b)
+printf("\n Shear Stresss induced in pins is %0.2f N/mm**2",tou)
diff --git a/3864/CH2/EX2.34/Ex2_34.sce b/3864/CH2/EX2.34/Ex2_34.sce
new file mode 100644
index 000000000..9ce4dd115
--- /dev/null
+++ b/3864/CH2/EX2.34/Ex2_34.sce
@@ -0,0 +1,45 @@
+clear
+//
+
+//Initilization of Variables
+
+b_s=60 //mm //width of steel Bar
+t_s=10 //mm //thickness of steel Bar
+b_c=40 //mm //width of copper bar
+t_c=5 //mm //thickness of copper bar
+E_s=2*10**5 //N/mm**2 //Modulus of Elasticity of steel bar
+E_c=1*10**5 //N/mm**2 //Modulus of Elasticity of copper bar
+alpha_s=12*10**-6 //Per degree celsius //Temperature coeff of steel bar
+alpha_c=17*10**-6 //Per degree celsius //Temperature coeff of copper bar
+L=1000 //mm //Length of bar
+L_s=1000 //mm //Length of bar
+t=80 //degree celsius
+
+//Calculations
+
+A_s=b_s*t_s //Area of steel bar
+A_c=b_c*t_c //Area of copper bar
+
+//Let P_s be the tensile force in steel bar and P_c be the compressive force in copper bar
+//The equilibrium of forces gives
+//P_s=2*P_c
+
+//Let dell=dell_s+dell_b
+dell=(alpha_c-alpha_s)*t
+
+P_c=dell*(2*(A_s*E_s)**-1+1*(A_c*E_c)**-1)**-1
+P_s=2*P_c
+
+//Stress in copper
+sigma_c=P_c*A_c**-1
+
+//Stress in steel
+sigma_s=P_s*A_s**-1
+
+//Change in Length of bar
+dell_2=alpha_s*t*L+P_s*L_s*(A_s*E_s)**-1
+
+//result
+printf("\n Stress in copper is %0.2f N/mm**2",sigma_c)
+printf("\n Stress in steel is %0.2f N/mm**2",sigma_s)
+printf("\n the change in Length is %0.2f mm",dell_2)
diff --git a/3864/CH2/EX2.35/Ex2_35.sce b/3864/CH2/EX2.35/Ex2_35.sce
new file mode 100644
index 000000000..66abf1a79
--- /dev/null
+++ b/3864/CH2/EX2.35/Ex2_35.sce
@@ -0,0 +1,72 @@
+clear
+//
+
+//Initilization of Variables
+
+A_c=500 //mm**2 //Area of each rod
+A_s=500
+A=500
+P=2*10**5 //N //Weight
+L=1 //m //Length of each rod
+t=40 //degree celsius //temperature
+E_s=2*10**5 //N/mm**2 //Modulus of Elasticity of steel rod
+E_c=1*10**5 //N/mm**2 //modulus of Elastictiy of copper rod
+alpha_s=1.2*10**-5 //Per degree Celsius //temp coeff of steel rod
+alpha_c=1.8*10**-5 //Per degree Celsius //Temp coeff of copper rod
+
+//Calculations
+
+//Let P_s be the force in each one of the copper rods and P_s be the force in steel rod
+//2*P_c+P_s=P .....................(1)
+
+//Extension of copper bar=Extension of steel bar
+//P_s*L*(A_s*E_s)**-1=P_c*L*(A_c*E_c)**-1
+//after simplifying above equation we get
+//P_s=2*P_c ........................(2)
+
+//Now substituting value of P_s in Equation 1 we get
+P_c=P*4**-1
+P_s=2*P_c
+
+//Now EXtension due to copper Load
+dell_1=P_c*L*1000*(A_c*E_c)**-1
+
+//Part-2
+
+//Due to rise of temperature of40 degree celsius
+
+//As bars are rigidly joined,let P_c1 be the compressive forccesdeveloped in copper bar and P_s1 be the tensile force in steel causing changes
+//P_s1=2*P_c1
+
+//dell_s+dell_c=(alpha_c-alpha_s)*t*L .......................................(3)
+//P_s1*L*(A_s*E_s)**-1+P_c1*L*(A_c*E_c)**-1=(alpha_c-alpha_s)*t*L ................(4)
+//After substituting values in above equation and further simplifying we get,
+P_c1=(alpha_c-alpha_s)*t*L*(2*(A_s*E_s)**-1+1*(A_c*E_c)**-1)**-1 //.................(5)
+P_s1=2*P_c1
+
+//Extension of bar due to temperature rise
+dell_2=alpha_s*t*L+P_s1*L*(A_s*E_s)**-1
+
+//Amount by which bar will descend
+dell_3=dell_1+dell_2
+
+//Load carried by steel bar
+P_S=P_s+P_s1
+
+//Load carried by copper bar
+P_C=P_c-P_c1
+
+//Part-3
+
+//Let P_c1_1=P_c //For convenience
+//Rise in temperature if Load is to be carried out by steel rod alone
+P_c1_1=P_c
+
+//From equation 5
+t=P_c1_1*(2*(A_s*E_s)**-1+1*(A_c*E_c)**-1)*(alpha_c-alpha_s)**-1
+
+//result
+printf("\n Extension Due top copper Load %0.2f mm",dell_1)
+printf("\n Load carried by each rod:P_s %0.2f N",P_s)
+printf("\n :P_c %0.2f N",P_c)
+printf("\n Rise in Temperature of steel rod should be %0.2f degree Celsius",t)
diff --git a/3864/CH2/EX2.36/Ex2_36.sce b/3864/CH2/EX2.36/Ex2_36.sce
new file mode 100644
index 000000000..6f16a2cc0
--- /dev/null
+++ b/3864/CH2/EX2.36/Ex2_36.sce
@@ -0,0 +1,36 @@
+clear
+//
+
+//Initilization of Variables
+
+t=40 //degree celsius //temperature
+A_s=400 //mm**2 //Area of steel bar
+A_c=600 //mm**2 //Area of copper bar
+E_s=2*10**5 //N/mm**2 //Modulus of Elasticity of steel bar
+E_c=1*10**5 //N/mm**2 //Modulus of Elasticity of copper bar
+alpha_s=12*10**-6 //degree celsius //Temperature coeff of steel bar
+alpha_c=18*10**-6 //degree celsius //Temperature coeff of copper bar
+L_c=800 //mm //Length of copper bar
+L_s=600 //mm //Length of steel bar
+
+//Calculations
+
+//Let P_s be the tensile force in steel bar and P_c be the compressive force in copper bar
+//Static Equilibrium obtained by taking moment about A
+//P_c=2*P_s
+
+//From property of similar triangles we get
+//(alpha_c*Lc-dell_c)*1**-1=(alpha_s*L_s-dell_s)*2**-1
+//After substituting values in above equations and further simplifying we get
+P_s=(2*alpha_c*L_c-alpha_s*L_s)*t*(L_s*(A_s*E_s)**-1+4*L_c*(A_c*E_c)**-1)**-1
+P_c=2*P_s
+
+//Stress in steel rod
+sigma_s=P_s*A_s**-1 //N/mm**2
+
+//Stress in copper rod
+sigma_c=P_c*A_c**-1 //N/mm**2
+
+//Result
+printf("\n Stress in steel rod is %0.2f N/mm**2",sigma_s)
+printf("\n STress in copper rod is %0.2f N/mm**2",sigma_c)
diff --git a/3864/CH2/EX2.37/Ex2_37.sce b/3864/CH2/EX2.37/Ex2_37.sce
new file mode 100644
index 000000000..155d3e6c4
--- /dev/null
+++ b/3864/CH2/EX2.37/Ex2_37.sce
@@ -0,0 +1,36 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=20 //mm //Diameter of bar
+P=37.7*10**3 //N //Load
+L=200 //mm //Guage Length
+dell=0.12 //mm //Extension
+dell_d=0.0036 //mm //contraction in diameter
+
+//Calculations
+
+//Area of bar
+A=%pi*4**-1*d**2
+
+//Let s and dell_s be the Linear strain and Lateral strain
+s=dell*L**-1
+dell_s=dell_d*d**-1
+mu=dell_s*s**-1 //Poissons ratio
+
+//dell=P*L*(A*E)**-1
+E=P*L*(dell*A)**-1 //N/mm**2 //Modulus of Elasticity of bar
+
+//Modulus of Rigidity
+G=E*(2*(1+mu))**-1 //N/mm**2
+
+//Bulk Modulus
+K=E*(3*(1-2*mu))**-1 //N/mm**2
+
+//result
+printf("\n Poissons ratio is %0.2f ",mu)
+printf("\n The Elastic constant are:E %0.2f ",E)
+printf("\n :G %0.2f ",G)
+printf("\n :K %0.2f ",K)
diff --git a/3864/CH2/EX2.38/Ex2_38.sce b/3864/CH2/EX2.38/Ex2_38.sce
new file mode 100644
index 000000000..86842b02d
--- /dev/null
+++ b/3864/CH2/EX2.38/Ex2_38.sce
@@ -0,0 +1,38 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=100 //mm //Diameter of circular rod
+P=1*10**6 //N //Tensile Force
+mu=0.3 //Poissons ratio
+E=2*10**5 //N/mm**2 //Youngs Modulus
+L=500 //mm //Length of rod
+
+//Calculations
+
+//Modulus of Rigidity
+G=E*(2*(1+mu))**-1 //N/mm**2
+
+//Bulk Modulus
+K=E*(3*(1-2*mu))**-1 //N/mm**2
+
+A=%pi*4**-1*d**2 //mm**2 //Area of Circular rod
+//Let sigma be the Longitudinal stress
+sigma=P*A**-1 //N/mm**2
+
+s=sigma*E**-1 //Linear strain
+e_x=s
+
+//Volumetric strain
+e_v=e_x*(1-2*mu)
+
+v=%pi*4**-1*d**2*L
+//Change in VOlume
+dell_v=e_v*v
+
+//Result
+printf("\n Bulk Modulus is %0.2f N/mm**2",E)
+printf("\n Modulus of Rigidity is %0.2f N/mm**2",G)
+printf("\n The change in Volume is %0.2f mm**3",dell_v)
diff --git a/3864/CH2/EX2.39/Ex2_39.sce b/3864/CH2/EX2.39/Ex2_39.sce
new file mode 100644
index 000000000..1a55112ed
--- /dev/null
+++ b/3864/CH2/EX2.39/Ex2_39.sce
@@ -0,0 +1,36 @@
+clear
+//
+
+//Initilization of Variables
+
+L=500 //mm //Length of rectangular cross section bar
+A=20*40 //mm**2 //Area of rectangular cross section bar
+P1=4*10**4 //N //Tensile Force on 20mm*40mm Faces
+P2=2*10**5 //N //compressive force on 20mm*500mm Faces
+P3=3*10**5 //N //Tensile Force on 40mm*500mm Faces
+E=2*10**5 //N/mm**2 //Youngs Modulus
+mu=0.3 //Poissons Ratio
+
+//Calculations
+
+//Let P_x,P_y,P_z be the forces n x,y,z directions
+
+P_x=P1*A**-1
+P_y=P2*A**-1
+P_z=P3*A**-1
+
+//Let e_x,e_y,e_z be the strains in x,y,z directions
+e_x=1*E**-1*(50+mu*20-15*mu)
+e_y=1*E**-1*(-mu*50-20-mu*15)
+e_z=1*E**-1*(-mu*50+mu*20+15)
+
+//Volumetric strain
+e_v=e_x+e_y+e_z
+
+//Volume
+V=20*40*500 //mm**3
+//Change in Volume
+dell_v=e_v*V //mm**3
+
+//Result
+printf("\n The change in Volume is %0.2f mm**3",dell_v)
diff --git a/3864/CH2/EX2.4/Ex2_4.sce b/3864/CH2/EX2.4/Ex2_4.sce
new file mode 100644
index 000000000..d8c5efd5a
--- /dev/null
+++ b/3864/CH2/EX2.4/Ex2_4.sce
@@ -0,0 +1,39 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=25 //mm //diameter of steel
+d2=18 //mm //Diameter at neck
+L=200 //mm //length of stee
+P=80*10**3 //KN //Load
+P1=160*10**3 //N //Load at Elastic Limit
+P2=180*10**3 //N //Max Load
+L1=56 //mm //Total Extension
+dell_l=0.16 //mm //Extension
+
+
+//Calculations
+
+A=%pi*d**2*4**-1 //Area of steel //mm**2
+
+p=P1*A**-1 //Stress at Elastic Limit //N/mm**2
+Y=P*L*(A*dell_l)**-1 //Modulus of elasticity
+
+//Let % elongation be x
+x=L1*L**-1*100
+
+//Percentage reduction in area
+//Let % A be a
+a=((%pi*4**-1*d**2)-(%pi*4**-1*d2**2))*(%pi*4**-1*d**2)**-1*100
+
+//Ultimate tensile stress
+sigma=P2*A**-1 //N/mm**2
+
+//result
+printf("\n Stress at Elastic limit is %0.2f N/mm**2",p)
+printf("\n Youngs Modulus is %0.2f N/mm**2",Y)
+printf("\n Percentage Elongation is %0.2f ",a)
+printf("\n Percentage reduction in area is %0.2f ",P2)
+printf("\n Ultimate tensile stress %0.2f N/mm**2",sigma)
diff --git a/3864/CH2/EX2.41/Ex2_41.sce b/3864/CH2/EX2.41/Ex2_41.sce
new file mode 100644
index 000000000..c7360546a
--- /dev/null
+++ b/3864/CH2/EX2.41/Ex2_41.sce
@@ -0,0 +1,21 @@
+clear
+//
+
+//Initilization of Variables
+
+E=2.1*10**5 //N/mm**2 //Youngs Modulus
+G=0.78*10**5 //N/mm**2 //Modulus of Rigidity
+
+//Calculations
+
+//Now using the relation
+//E=2*G*(1+mu)
+mu=E*(2*G)**-1-1 //Poissons ratio
+
+//Bulk Modulus
+K=E*(3*(1-2*mu))**-1 //N/mm**2
+
+
+//Result
+printf("\n The Poissons Ratio is %0.2f ",mu)
+printf("\n The modulus of Rigidity %0.2f N/mm**2",K)
diff --git a/3864/CH2/EX2.42/Ex2_42.sce b/3864/CH2/EX2.42/Ex2_42.sce
new file mode 100644
index 000000000..f11a803cd
--- /dev/null
+++ b/3864/CH2/EX2.42/Ex2_42.sce
@@ -0,0 +1,20 @@
+clear
+//
+
+//Initilization of Variables
+
+G=0.4*10**5 //N/mm**2 //Modulus of rigidity
+K=0.75*10**5 //N/mm**2 //Bulk Modulus
+
+//Calculations
+
+//Youngs Modulus
+E=9*G*K*(3*K+G)**-1
+
+//Now from the relation
+//E=2*G(1+2*mu)
+mu=E*(2*G)**-1-1 //Poissons ratio
+
+//result
+printf("\n Youngs modulus is %0.2f N/mm**2",E)
+printf("\n Poissons ratio is %0.2f ",mu)
diff --git a/3864/CH2/EX2.43/Ex2_43.sce b/3864/CH2/EX2.43/Ex2_43.sce
new file mode 100644
index 000000000..31a051d8c
--- /dev/null
+++ b/3864/CH2/EX2.43/Ex2_43.sce
@@ -0,0 +1,82 @@
+clear
+//
+
+//Initilization of Variables
+
+b=60 //mm //width of bar
+d=30 //mm //depth of bar
+L=200 //mm //Length of bar
+A=30*60 //mm**2 //Area of bar
+A2=30*200 //mm**2 //Area of bar along which expansion is restrained
+P=180*10**3 //N //Compressive force
+E=2*10**5 //N/mm**2 //Youngs Modulus
+mu=0.3 //Poissons ratio
+
+//Calculations
+
+//The bar is restrained from expanding in Y direction
+P_z=0
+P_x=P*A**-1 //stress developed in x direction
+
+//Now taking compressive strain as positive
+//e_x=P_x*E**-1-mu*P_y*E**-1 .......................(1)
+//e_y=-mu*P_x*E**-1+P_y*E**-1 ....................(2)
+//e_z=-mu*P_x*E**-1-mu*P_y*E**-1 ......................(3)
+
+//Part-1
+//When it is fully restrained
+e_y=0
+P_y=30 //N/mm**2
+e_x=P_x*E**-1-mu*P_y*E**-1
+e_z=-mu*P_x*E**-1-mu*P_y*E**-1
+
+//Change in Length
+dell_l=e_x*L //mm
+
+//Change in width
+dell_b=b*e_y
+
+//change in Depth
+dell_d=d*e_z
+
+//Volume of bar
+V=b*d*L //mm**3
+//Change in Volume
+e_v=(e_x+e_y+e_z)*V //mm**3
+
+//Part-2
+//When 50% is restrained
+
+//Free strain in Y direction
+e_y1=mu*P_x*E**-1
+
+//As 50% is restrained,so
+e_y2=-50*100**-1*e_y1
+
+//But form Equation 2 we have e_y=-mu*P_x*E**-1+P_y*E**-1
+//After substituting values in above equation and furthe simplifying we get
+P_y=e_y2*E+d
+
+e_x2=P_x*E**-1-mu*P_y*E**-1
+e_z2=-mu*P_x*E**-1-mu*P_y*E**-1
+
+//Change in Length
+dell_l2=e_x2*L //mm
+
+//Change in width
+dell_b2=b*e_y2
+
+//change in Depth
+dell_d2=d*e_z2
+
+//Change in Volume
+e_v2=(e_x2+e_y2+e_z2)*V //mm**3
+
+//REsult
+printf("\n Change in Dimension of bar is:dell_l %0.2f mm",dell_l)
+printf("\n :dell_b %0.4f mm",dell_b)
+printf("\n :dell_d %0.2f mm",dell_d)
+printf("\n Change in Volume is %0.2f mm**3",e_v)
+printf("\n Changes in material when only 50% of expansion can be reatrained:dell_l2mm",dell_l2)
+printf("\n :dell_b2 %0.4f mm",dell_b2)
+printf("\n :dell_d2 %0.2f mm",dell_d2)
diff --git a/3864/CH2/EX2.44/Ex2_44.sce b/3864/CH2/EX2.44/Ex2_44.sce
new file mode 100644
index 000000000..8cd10f122
--- /dev/null
+++ b/3864/CH2/EX2.44/Ex2_44.sce
@@ -0,0 +1,32 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P=10*10**3 //N //Load
+E=2*10**5 //N/mm**2 //Youngs Modulus
+d2=12 //mm //Diameter of bar1
+d1=16 //mm //diameter of bar2
+L1=200 //mm //Length of bar1
+L2=500 //mm //Length of bar2
+
+//Calculations
+
+//Let A1 and A2 be the cross Area of Bar1 & bar2 respectively
+A1=%pi*4**-1*d1**2 //mm**2
+A2=%pi*4**-1*d2**2 //mm**2
+
+//Let p1 and p2 be the stress in Bar1 nad bar2 respectively
+p1=P*A1**-1 //N/mm**2
+p2=P*A2**-1 //N/mm**2
+
+//Let V1 nad V2 be the Volume of of Bar1 and Bar2
+V1=A1*(L1+L1)
+V2=A2*L2
+
+//Let E be the strain Energy stored in the bar
+E=p1**2*(2*E)**-1*V1+p2**2*V2*(2*E)**-1
+
+//result
+printf("\n The Strain Energy stored in Bar is %0.2f N-mm",E)
diff --git a/3864/CH2/EX2.45/Ex2_45.sce b/3864/CH2/EX2.45/Ex2_45.sce
new file mode 100644
index 000000000..bcb78b03e
--- /dev/null
+++ b/3864/CH2/EX2.45/Ex2_45.sce
@@ -0,0 +1,66 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Bar-A
+d1=30 //mm //Diameter of bar1
+L=600 //mm //length of bar1
+
+//Bar-B
+d2=30 //mm //Diameter of bar2
+d3=20 //mm //Diameter of bar2
+L2=600 //mm //length of bar2
+
+//Calculations
+
+//Area of bar-A
+A1=%pi*4**-1*d1**2
+
+//Area of bar-B
+A2=%pi*4**-1*d2**2
+A3=%pi*4**-1*d3**2
+
+//let SE be the Strain Energy
+//Strain Energy stored in Bar-A
+//SE=p**2*(2*E)**-1*V
+//After substituting values and simolifying further we get
+//SE=P**2*E**-1*0.4244
+
+//Strain Energy stored in Bar-B
+//SE2=p1**2*V1*(2*E)**-1+p2**2*V2*(2*E)**-1
+//After substituting values and simolifying further we get
+//SE2=0.6897*P**2*E**-1
+
+//Let X be the ratio of SE in Bar-B and SE in Bar-A
+X=0.6897*0.4244**-1
+
+//Part-2
+
+//When Max stress is produced is same:Let p be the max stress produced
+
+//Stress in bar A is p throughout
+//In bar B:stress in 20mm dia.portion=p2=p
+
+//Stress in 30 mm dia.portion
+//p1=P*A2*A3**-1
+//After substituting values and simolifying further we get
+//p1=4*9**-1*p
+
+//Strain Energy in bar A
+//SE_1=p**2*(2*E)**-1*A1*L1
+//After substituting values and simolifying further we get
+//SE_1=67500*p**2*%pi*E**-1
+
+//Strain Energy in bar B
+//SE_2=p1**2*V1*(2*E)**-1+p2**2*V2*(2*E)**-1
+//After substituting values and simolifying further we get
+//SE_2=21666.67*%pi*p**2*E**-1
+
+//Let Y be the Ratio of SE in bar B and SE in bar A
+Y=21666.67*67500**-1
+
+//result
+printf("\n Gradually applied Load is %0.2f ",X)
+printf("\n Gradually applied Load is %0.2f ",Y)
diff --git a/3864/CH2/EX2.46/Ex2_46.sce b/3864/CH2/EX2.46/Ex2_46.sce
new file mode 100644
index 000000000..11d592824
--- /dev/null
+++ b/3864/CH2/EX2.46/Ex2_46.sce
@@ -0,0 +1,34 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+W=100 //N //Load
+E=2*10**5 //N/mm**2 //Youngs Modulus
+h=60 //mm //Height through Load falls down
+L=400 //mm //Length of collar
+d=30 //mm //diameter of bar
+
+//Calculations
+
+A=%pi*4**-1*d**2 //mm**2 //Area of bar
+
+//Instantaneous stress produced is
+p=W*A**-1*(1+(1+(2*A*E*h*(W*L)**-1))**0.5)
+
+//Now the EXtension of the bar is neglected in calculating work doneby the Load,then
+P=(2*E*h*W*(A*L)**-1)**0.5
+
+//Let percentage error be denoted by E1
+//Percentage error in approximating is
+E1=(p-P)*p**-1*100
+
+//Instantaneous Extension produced is
+dell_l=(P)*E**-1*L
+
+
+//Result
+printf("\n The Instantaneous stress is %0.2f N/mm",p)
+printf("\n Percentage Error is %0.2f ",E1)
+printf("\n The Instantaneous extension is %0.2f mm",dell_l)
diff --git a/3864/CH2/EX2.47/Ex2_47.sce b/3864/CH2/EX2.47/Ex2_47.sce
new file mode 100644
index 000000000..2ffb85808
--- /dev/null
+++ b/3864/CH2/EX2.47/Ex2_47.sce
@@ -0,0 +1,44 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=20 //mm //Diameter of steel bar
+L=1000 //mm //Length of bar
+E=2*10**5 //N/mm**2 //Youngs Modulus
+p=300 //N/mm**2 //max Permissible stress
+h=50 //mm //Height through which weight will fall
+w=600 //N //Load
+
+//Calculations
+
+//ARea of steel bar
+A=%pi*4**-1*d**2
+
+//Instantaneous extension is
+dell_l=p*L*E**-1 //mm
+
+//Work done by Load
+//W=W1*(h+dell_l)
+
+//Volume of bar
+V=(A)*L
+
+//Let E1 be the strain Energy
+E1=p**2*(2*E)**-1*V
+
+//Answer in Book for Strain Energy is Incorrect
+
+//Now Equating Workdone by Load to strain Energy
+W1=E1*51.5**-1
+
+//Now when w=600 N
+//Let W2 be the Work done by the Load
+//W2=w(h2*dell_l)
+
+h=E1*w**-1-dell_l
+
+//Result
+printf("\n The Max Lodad which can Fall from a height of 50 mm on the collar is %0.2f N",W1)
+printf("\n the Max Height from which a 600 N Load can fall on the collar is %0.2f mm",h)
diff --git a/3864/CH2/EX2.48/Ex2_48.sce b/3864/CH2/EX2.48/Ex2_48.sce
new file mode 100644
index 000000000..e5a667a1b
--- /dev/null
+++ b/3864/CH2/EX2.48/Ex2_48.sce
@@ -0,0 +1,35 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D_s=30 //mm //Diameter of steel rod
+d=30 //mm //Internal Diameter of copper tube
+D=40//mm //External Diameter of copper tube
+E_s=2*10**5 //N/mm**2 //Youngs Modulus of Steel rod
+E_c=1*10**5//N/mm**2 //Youngs Modulus of copper tube
+P=100 //N //Load
+h=40 //mm //height from which Load falls
+L=800 //mm //Length
+
+//Calculations
+
+//Area of steel rod
+A_s=%pi*4**-1*D_s**2
+
+//Area of copper tube
+A_c=%pi*4**-1*(D**2-d**2)
+
+//But Dell_s=dell_c=dell
+//p_s*E_s**-1*L=p_c*L*E_c
+//After simplifying furthe we get
+//p_s=2*p_c
+
+//Now Equating internal Energy to Workdone we get
+p_c=(2*P*h*L**-1*(4*A_s*E_s**-1+A_c*E_c**-1))**0.5
+p_s=2*p_c
+
+//Result
+printf("\n STress produced in steel is %0.2f N/mm**2",p_s)
+printf("\n STress produced in copper is %0.2f N/mm**2",p_c)
diff --git a/3864/CH2/EX2.49/Ex2_49.sce b/3864/CH2/EX2.49/Ex2_49.sce
new file mode 100644
index 000000000..15102ddaf
--- /dev/null
+++ b/3864/CH2/EX2.49/Ex2_49.sce
@@ -0,0 +1,63 @@
+clear
+//
+//
+
+dell=0.25 //mm //Instantaneous Extension
+
+//Bar-A
+b1=25 //mm //width of bar
+D1=500 //mm //Depth of bar
+
+//Bar-B
+b2_1=25 //mm //width of upper bar
+b2_2=15 //mm //Width of Lower Bar
+L2=200 //mm //Length of upper bar
+L1=300 //mm //Length of Lower bar
+
+E=2*10**5 //N/mm**2 //Youngs Modulus of bar
+
+//Calculations
+
+//Strain
+e=dell*D1**-1
+
+//Load
+p=e*E
+
+//Area of bar-A
+A=%pi*4**-1*25**2
+
+//Volume of bar-A
+V=A*D1
+
+//Let E1 be the Energy of Blow
+//Energy of Blow
+E1=p**2*(E)**-1*V
+
+//Let p2 be the Max stress in bar B When this blow is applied.
+//the max stress occurs in the 15mm dia. portion,Hence, the stress in 25 mm dia.portion is
+//p2*%pi*4**-1*b2_2**2*(%pi*4**-1*b2_2**2=0.36*p
+
+//Strain Energy of bar B
+//E2=p**2*(2*E)**-1*v1+1*(2*E)**-1*(0.36*p2)**2*v2
+//After substituting values and Further substituting values we get
+//E2=0.1643445*p2**2
+
+//Equating it to Energy of applied blow,we get
+p2=(12271.846*0.1643445**-1)**0.5
+
+//Stress in top portion
+sigma=0.36*p2
+
+//Extension in Bar-1
+dell_1=p2*E**-1*L1
+
+//Extension in Bar-2
+dell_2=0.36*p2*E**-1*L2
+
+//Extension of bar
+dell_3=dell_1+dell_2
+
+//Result
+printf("\n Instantaneous Max stress is %0.2f N/mm**2",sigma)
+printf("\n extension in Bar is %0.2f mm",dell_3)
diff --git a/3864/CH2/EX2.6/Ex2_6.sce b/3864/CH2/EX2.6/Ex2_6.sce
new file mode 100644
index 000000000..06fbd1663
--- /dev/null
+++ b/3864/CH2/EX2.6/Ex2_6.sce
@@ -0,0 +1,21 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P=40*10**3 //N //Load
+L1=160 //mm //Length of Bar1
+L2=240 //mm //Length of bar2
+L3=160 //mm //Length of bar3
+d1=25 //mm //Diameter of Bar1
+d2=20 //mm //diameter of bar2
+d3=25 //mm //diameter of bar3
+dell_l=0.285 //mm //Total Extension of bar
+
+//Calculations
+
+E=P*4*(dell_l*%pi)**-1*(L1*(d1**2)**-1+L2*(d2**2)**-1+L3*(d3**2)**-1)
+
+//Result
+printf("\n The Youngs Modulus of the material %0.2f N/mm**2",E)
diff --git a/3864/CH2/EX2.7/Ex2_7.sce b/3864/CH2/EX2.7/Ex2_7.sce
new file mode 100644
index 000000000..89129ffa2
--- /dev/null
+++ b/3864/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,27 @@
+clear
+//
+
+//Initilization of Variables
+
+E1=2*10**5 //N/mm**2 //modulus of Elasticity of material1
+E2=1*10**5 //N/mm**2 //modulus of Elasticity of material2
+P=25*10**3 //N //Load
+t=20 //mm //thickness of material
+b1=40 //mm //width of material1
+b2=30 //mm //width of material2
+L1=500 //mm //Length of material1
+L2=750 //mm //Length of material2
+
+//Calculations
+
+A1=b1*t //mm**2 //Area of materila1
+A2=b2*t //mm**2 //Area of material2
+
+dell_l1=P*L1*(A1*E1)**-1 //Extension of Portion1
+dell_l2=P*L2*(A2*E2)**-1 //Extension of portion2
+
+//Total Extension of Bar is
+dell_l=dell_l1+dell_l2
+
+//Result
+printf("\n The Total Extension of the Bar is %0.2f mm",dell_l)
diff --git a/3864/CH2/EX2.8/Ex2_8.sce b/3864/CH2/EX2.8/Ex2_8.sce
new file mode 100644
index 000000000..4d18eb885
--- /dev/null
+++ b/3864/CH2/EX2.8/Ex2_8.sce
@@ -0,0 +1,25 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=1000 //mm //Length of Bar
+l=400 //mm //Length upto which bire is drilled
+D=30 //mm //diameter of bar
+d1=10 //mm //diameter of bore
+P=25*10**3 //N //Load
+dell_l=0.185 //mm //Extension of bar
+
+//Calculations
+
+L1=L-l //Length of bar above the bore
+L2=400 //mm //Length of bore
+
+A1=%pi*4**-1*D**2 //Area of bar
+A2=%pi*4**-1*(D**2-d1**2) //Area of bore
+
+E=P*dell_l**-1*(L1*A1**-1+L2*A2**-1)
+
+//Result
+printf("\n The Modulus of ELasticity is %0.2f N/mm**2",E)