summaryrefslogtreecommitdiff
path: root/3831/CH12/EX12.17/Ex12_17.sce
diff options
context:
space:
mode:
Diffstat (limited to '3831/CH12/EX12.17/Ex12_17.sce')
-rw-r--r--3831/CH12/EX12.17/Ex12_17.sce53
1 files changed, 53 insertions, 0 deletions
diff --git a/3831/CH12/EX12.17/Ex12_17.sce b/3831/CH12/EX12.17/Ex12_17.sce
new file mode 100644
index 000000000..02fde25eb
--- /dev/null
+++ b/3831/CH12/EX12.17/Ex12_17.sce
@@ -0,0 +1,53 @@
+// Example 12_17
+clc;funcprot(0);
+// Given data
+T_m=-100;// °F
+p_m=1500;// psia
+R=1545.35;// ft.lbf/(lbmole.R)
+v_ma=1.315;// ft^3/lb mole
+
+// Calculation
+// (a)For ideal gas mixture behavior,
+v_m=(R*(T_m+459.67))/(p_m*144);// ft^3/lb mole
+Error_a=((v_m-v_ma)/v_ma)*100;// % high
+printf("Results: \n(a)v_m=%1.2f ft^3/mole \n Percentage error=%2.1f percentage high",v_m,Error_a);
+// (b)The Dalton compressibility factor
+// From Table C.12a, we find
+p_c_N_2=492;// psia
+T_c_N_2=227.1;// R
+p_c_CH_4=673;// psia
+T_c_CH_4=343.9;// R
+x_N_2=0.300;// The mole fraction for Nitrogen
+x_CH_4=0.700;// The mole fraction for methane
+vbar_m=1.51;// ft^3/lb mole
+v_R_N_2=(vbar_m*p_c_N_2*144)/(x_N_2*R*T_c_N_2);// The reduced pseudospecific volume for Nitrogen
+v_R_CH_4=(vbar_m*p_c_CH_4*144)/(x_CH_4*R*T_c_CH_4);// The reduced pseudospecific volume for methane
+T_R_N_2=(T_m+459.67)/T_c_N_2;// The reduced temperature for Nitrogen
+T_R_CH_4=(T_m+459.67)/T_c_CH_4;// The reduced temperature for methane
+// From Figure 7.6 in Chapter 7, we find that, for these values
+Z_D_N_2=0.91;// The Dalton compressibility factor for Nitrogen
+Z_D_CH_4=0.39;// The Dalton compressibility factor for methane
+Z_D_m=(x_N_2*Z_D_N_2)+(x_CH_4*Z_D_CH_4);// The Dalton compressibility factor for the mixture
+vbar_m=(Z_D_m*(R*(T_m+459.67)))/(p_m*144);// ft^3/lbmole
+Error_b=((vbar_m-v_ma)/v_ma)*100;// % high
+printf("\n(b)vbar_m=%1.2f ft^3/mole \n Percentage error=%2.1f percentage high",vbar_m,Error_b);
+// (c) The Amagat compressibility factor
+p_R_N_2=p_m/p_c_N_2;// The reduced pressure for Nitrogen
+T_R_N_2=(T_m+459.67)/T_c_N_2;// The reduced temperature for Nitrogen
+p_R_CH_4=p_m/p_c_CH_4;// The reduced pressure for methane
+T_R_CH_4=(T_m+459.67)/T_c_CH_4;// The reduced temperature for nitrogen
+Z_A_N_2=0.84;// The Amagat compressibility factor
+Z_A_CH_4=0.35;// The Amagat compressibility factor
+Z_Am=(x_N_2*Z_A_N_2)+(x_CH_4*Z_A_CH_4);// The Amagat compressibility factor
+vbar_m=(Z_Am*R*(T_m+459.67))/(p_m*144);// ft^3/lbmole
+Error_c=((vbar_m-v_ma)/v_ma)*100;// % high
+printf("\n(c)vbar_m=%1.2f ft^3/mole \n Percentage error=%2.1f percentage high",vbar_m,Error_c);
+// (d) Using Kay’s law, Eqs. (12.39) and (12.40), we get
+p_cm=(x_N_2*p_c_N_2)+(x_CH_4*p_c_CH_4);// psia
+T_cm=(x_N_2*T_c_N_2)+(x_CH_4*T_c_CH_4);// R
+p_Rm=p_m/p_cm;// The reduced pressure
+T_Rm=(T_m+459.67)/T_cm;;// The reduced temperature
+Z_Km=0.51;// The compressibility factor
+vbar_m=(Z_Km*R*(T_m+459.67))/(p_m*144);// ft^3/lbmole
+printf("\n(d)vbar_m=%1.2f ft^3/mole",vbar_m);
+// The answer vary due to round off error