summaryrefslogtreecommitdiff
path: root/3831/CH12/EX12.15/Ex12_15.sce
diff options
context:
space:
mode:
Diffstat (limited to '3831/CH12/EX12.15/Ex12_15.sce')
-rw-r--r--3831/CH12/EX12.15/Ex12_15.sce45
1 files changed, 45 insertions, 0 deletions
diff --git a/3831/CH12/EX12.15/Ex12_15.sce b/3831/CH12/EX12.15/Ex12_15.sce
new file mode 100644
index 000000000..ac0ea4925
--- /dev/null
+++ b/3831/CH12/EX12.15/Ex12_15.sce
@@ -0,0 +1,45 @@
+// Example 12_15
+clc;funcprot(0);
+// Given data
+T_m=500;// K
+p_m=20.0;// MPa
+R=8.3143;// kJ/(kg mole.K)
+
+// Calculation
+// Assume a-ammonia,cl-chlorine,no-nitrous oxide
+m_a=1.00;// kg
+m_cl=1.00;// kg
+m_no=1.00;// kg
+m_m=m_a+m_cl+m_no;// kg
+// The mass fractions are
+w_a=m_a/m_m;
+w_cl=m_cl/m_m;
+w_no=m_no/m_m;
+M_a=17.030;// kg/kgmole
+M_cl=70.906;// kg/kgmole
+M_no=44.013;// kg/kgmole
+M_m=1/((w_a/M_a)+(w_cl/M_cl)+(w_no/M_no));// The molecular mass of the mixture in kg/kgmole
+p_c_a=11.280;// MPa
+T_c_a=405.5;// K
+p_c_cl=7.710;// MPa
+T_c_cl=417.0;// K
+p_c_no=7.270;// MPa
+T_c_no=309.7;// K
+R_a=R/M_a;// kJ/kg.K
+R_cl=R/M_cl;// kJ/kg.K
+R_no=R/M_no;// kJ/kg.K
+// The reduced temperatures and pressures are
+T_R_a=T_m/T_c_a;
+p_R_a=p_m/p_c_a;
+T_R_cl=T_m/T_c_cl;
+p_R_cl=p_m/p_c_cl;
+T_R_no=T_m/T_c_no;
+p_R_no=p_m/p_c_no;
+// Using these values on Figure 7.6 gives the following Amagat compressibility factors:
+Z_A_a=0.64;
+Z_A_cl=0.55;
+Z_A_no=0.86;
+Z_Am=(((w_a*M_m)/M_a)*Z_A_a)+(((w_cl*M_m)/M_cl)*Z_A_cl)+(((w_no*M_m)/M_no)*Z_A_no);// The Amagat compressibility factor for the mixture
+R_m=R/M_m;// kJ/kg.K
+V_m=(Z_Am*m_m*R_m*T_m)/(p_m*1000);// m^3
+printf("\nThe total volume occupied by the mixture,V_m=%0.4f m^3",V_m);