diff options
Diffstat (limited to '3821/CH2')
-rw-r--r-- | 3821/CH2/EX2.1/Example2_1.sce | 22 | ||||
-rw-r--r-- | 3821/CH2/EX2.2/Example2_2.sce | 19 | ||||
-rw-r--r-- | 3821/CH2/EX2.3/Example2_3.sce | 26 | ||||
-rw-r--r-- | 3821/CH2/EX2.4/Example2_4.sce | 23 | ||||
-rw-r--r-- | 3821/CH2/EX2.5/Example2_5.sce | 31 | ||||
-rw-r--r-- | 3821/CH2/EX2.6/Example2_6.sce | 25 |
6 files changed, 146 insertions, 0 deletions
diff --git a/3821/CH2/EX2.1/Example2_1.sce b/3821/CH2/EX2.1/Example2_1.sce new file mode 100644 index 000000000..d54bc5a48 --- /dev/null +++ b/3821/CH2/EX2.1/Example2_1.sce @@ -0,0 +1,22 @@ +///Example 1.2 Page No:20
+///Find Cross-Section Area
+///Input data
+clc;
+clear;
+L1=5; //Length of steel bar in m
+d1=25*10^-3; //Diametr of steel bar in mm
+deltaLt1=25*10^-3; ///Steel
+pt1=800;
+pi1=3.142; //Power load of steel bar in N
+
+////Calculation
+A1=(pi1/4)*((deltaLt1)^2); ///Cross-section area
+sigmat1=pt1/A1; //Stress in steel bar
+et1=deltaLt1/L1; ///Strain in steel bar
+E1=sigmat1/et1; //Young's modulus
+
+///Output
+mprintf('value of Cross-section area= %f \n',A1);
+printf('value of stress in steel bar= %f MN/m^2 \n',sigmat1);
+printf('value of strain in steel bar= %f \n',et1);
+printf('value of Youngs modulus= %f N/m^2 \n',E1);
diff --git a/3821/CH2/EX2.2/Example2_2.sce b/3821/CH2/EX2.2/Example2_2.sce new file mode 100644 index 000000000..744aa48f5 --- /dev/null +++ b/3821/CH2/EX2.2/Example2_2.sce @@ -0,0 +1,19 @@ +///Example 1.2 Page No:20
+///Find Stress in Steel bar
+///Input data
+clc;
+clear;
+L1=300*10^-3; //Length of hexagonal prismatic steel bar in mm
+A1=500*10^-6; //Area of cross section of steel bar mm**2
+Pt1=500*10^3; //Load of steel bar in KN
+E1=210*10^9; //Modulus of elasticity GN/m**2
+
+///Calculation
+sigmat1=Pt1/A1; //Stress in steel bar
+et1=sigmat1/E1; //Strain steel bar is
+deltaLt1=et1*L1; //Therefore,elongation of the steel bar is given by
+
+////Output
+printf('stress in steel bar= %f N/m^2 \n',sigmat1);
+printf('therefore,strain steel bar is given by= %f \n',et1);
+printf('therefore,elongation of the steel bar is given by= %f m',deltaLt1);
diff --git a/3821/CH2/EX2.3/Example2_3.sce b/3821/CH2/EX2.3/Example2_3.sce new file mode 100644 index 000000000..c4d4fdd4f --- /dev/null +++ b/3821/CH2/EX2.3/Example2_3.sce @@ -0,0 +1,26 @@ +///Example 1.3 Page No:21
+///Find Stress in the Steel wire
+//Input Data
+clc;
+clear;
+Pt1=600; //Tensils force in N
+d1=2*10^-3; //Diameter of steel wire in mm
+L1=15; //Length of wire in m
+E1=210*10^9; //Modulus of elasticity of the material in GN/M**2
+pi1=3.1482;
+
+
+//Calculation
+A1=(pi1/4)*(d1^2); //(1)cross section area
+sigmat1=(Pt1)/(A1); //stress in the steel wire
+et1=((sigmat1)/(E1)); //(2)Therefore, strain in steel wire is given by
+deltaLt1=et1*L1; //(3)Enlongation of the steel wire is given by
+pe=((deltaLt1/L1)*100); //(4)Percentage elongation
+
+
+/////Output
+printf('cross section area= %f m^2\n',A1);
+printf('stress in the steel wire= %f GN/m^2 \n',sigmat1);
+printf('modulus of elasticity=%f \n',et1);
+printf('strain in steel wire=%f mm \n',deltaLt1)
+printf('percentage elongation=%f percent \n',pe)
diff --git a/3821/CH2/EX2.4/Example2_4.sce b/3821/CH2/EX2.4/Example2_4.sce new file mode 100644 index 000000000..865109e13 --- /dev/null +++ b/3821/CH2/EX2.4/Example2_4.sce @@ -0,0 +1,23 @@ +////Example 1.4 Page No:22
+///Find Stress in square rod
+//Input data
+clc;
+clear;
+A1=30*30*10^-6; //Area of square rod in mm**2
+L1=5; ///Length of square rod in m
+Pc=150*10^3; //Axial comperessive load of a rod in kN
+E1=215*10^9; //Modulus of elasticity in GN/m**2
+
+
+//Calculation
+sigmac=((Pc)/(A1)); //Stress in square rod
+ec=(sigmac)/(E1); //Modulusof elasticity is E1=sigmac/ec ,therefore strain in square rod is
+deltaLc=ec*5; ///Therefore shortening of length of the rod
+
+
+///Output
+printf('stress in square rod %f N/m^2',sigmac);
+printf('\n');
+printf('strain in square rod ec= %f\n',ec);
+printf('shortening of length of the rod= %f m \n',deltaLc);
+
diff --git a/3821/CH2/EX2.5/Example2_5.sce b/3821/CH2/EX2.5/Example2_5.sce new file mode 100644 index 000000000..1d80a7f2f --- /dev/null +++ b/3821/CH2/EX2.5/Example2_5.sce @@ -0,0 +1,31 @@ +////Example 1.5 Page No:23
+////Find Stress in metallic rod
+////input data
+clc;
+clear;
+d1=50*10^-3; //Diameter of metalic rod in mm**2
+L1=220*10^-3; //Length of metalic rod in mm
+Pt1=40*10^3; //Load of metalic rod in KN
+deltaLt1=0.03*10^-3; //Elastic enlongation in mm
+ypl=160*10^3; //Yield point load in KN
+ml=250*10^3; //Maximum load in KN
+lsf=270*10^-3; //Length of specimen at fracture in mm
+pi=3.142;
+
+//calculation
+A1=(((pi)/(4))*((d1)^2)); //(1)Cross section area
+sigmat1=Pt1/A1; //Stress in metallic rod
+et1=deltaLt1/L1; //Strain n metallic rod
+E1=sigmat1/et1; //Young's modulus
+ys=ypl/A1; //(2)Yeild strength
+uts=ml/A1; //(3)Ultimate tensile strength
+Pebf1=((lsf-L1)/L1)*100; //Percentage elongation before fracture
+
+//output
+printf('cross section area = %f m^2\n',A1);
+printf('stress in metallic rod= %f N/m^2 \n',sigmat1);
+printf('strain n metallic rod= %f \n',et1);
+printf('youngs modulus= %f GN/m^2\n',E1);
+printf('yeild strength= %f MN/m^2\n',ys);
+printf('ultimate tensile strength= %f MN/m^2 \n',uts);
+printf('percentage elongation before fracture= %f percent \n ',Pebf1);
diff --git a/3821/CH2/EX2.6/Example2_6.sce b/3821/CH2/EX2.6/Example2_6.sce new file mode 100644 index 000000000..2de7a49ba --- /dev/null +++ b/3821/CH2/EX2.6/Example2_6.sce @@ -0,0 +1,25 @@ +////Example 1.6 Page No:24
+///Find Stress in square metal bar
+//Input data
+clc;
+clear;
+A1=50*50*10^-6; //Area ofsquare metal bar in mm**2
+Pc=600*10^3; //Axial compress laod in KN
+L1=200*10^-3; //Gauge length of metal bar in mm
+deltaLc=0.4*10^-3; //Contraction length of metal bar in mm
+deltaLlateral=0.05*10^-3; //Lateral length of metal bar in mm
+
+//Calculation
+sigmac=Pc/A1; //Stress in square metal bar
+ec=deltaLc/L1; //Longitudinal or linear strain in square metal bar
+E1 =sigmac/ec; //Smodule of elasticity
+elateral=deltaLlateral/L1; //Lateral strain in square metal bar
+poissonsratio=elateral/ec;
+
+
+//Output
+printf('stress in bar=%f N/m^2 \n',sigmac);
+printf('longitudinal or linear strain in square metal bar= %f \n',ec);
+printf('module of elasticity= %f N/m^2 \n',E1);
+printf('lateral strain in square metal bar=%f \n',elateral);
+printf('poissons ratio=%f \n',poissonsratio);
|