summaryrefslogtreecommitdiff
path: root/3821/CH14
diff options
context:
space:
mode:
Diffstat (limited to '3821/CH14')
-rw-r--r--3821/CH14/EX14.1/Example14_1.sce18
-rw-r--r--3821/CH14/EX14.10/Example14_10.sce26
-rw-r--r--3821/CH14/EX14.11/Example14_11.sce17
-rw-r--r--3821/CH14/EX14.12/Example14_12.sce19
-rw-r--r--3821/CH14/EX14.13/Example14_13.sce21
-rw-r--r--3821/CH14/EX14.14/Example14_14.sce23
-rw-r--r--3821/CH14/EX14.15/Example14_15.sce32
-rw-r--r--3821/CH14/EX14.16/Example14_16.sce42
-rw-r--r--3821/CH14/EX14.2/Example14_2.sce24
-rw-r--r--3821/CH14/EX14.3/Example14_3.sce35
-rw-r--r--3821/CH14/EX14.4/Example14_4.sce31
-rw-r--r--3821/CH14/EX14.5/Example14_5.sce20
-rw-r--r--3821/CH14/EX14.6/Example14_6.sce17
-rw-r--r--3821/CH14/EX14.7/Example14_7.sce21
-rw-r--r--3821/CH14/EX14.8/Example14_8.sce44
-rw-r--r--3821/CH14/EX14.9/Example14_9.sce30
16 files changed, 420 insertions, 0 deletions
diff --git a/3821/CH14/EX14.1/Example14_1.sce b/3821/CH14/EX14.1/Example14_1.sce
new file mode 100644
index 000000000..653f1fc50
--- /dev/null
+++ b/3821/CH14/EX14.1/Example14_1.sce
@@ -0,0 +1,18 @@
+////Chapter No 14 Air Standard Cycles
+////Example 14.1 Page No:302
+///Find thermal efficiency of the carnot cycle eta
+///Input data
+clc;
+clear;
+Tmax=477+273; //Temperature limits for the engine 477 degree celcius
+Tmin=27+273; //Temperature limits for the engine 27 degree celcius
+wd=150; //Carnot cycle produce in KJ
+
+//Calculatkion
+eta=(1-(Tmin/Tmax)); //Thermal efficiency of the carnot cycle in %
+Qs=(wd/eta); //Added during the process in Kj
+
+
+//Output
+printf('thermal efficiency of the carnot cycle eta= %f percent \n',100*eta);
+printf('added during the process Qs= %f KJ \n',Qs);
diff --git a/3821/CH14/EX14.10/Example14_10.sce b/3821/CH14/EX14.10/Example14_10.sce
new file mode 100644
index 000000000..9241bba54
--- /dev/null
+++ b/3821/CH14/EX14.10/Example14_10.sce
@@ -0,0 +1,26 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.10 Page No 312
+///Find Middle temperature
+//Input data
+clc;
+clear;
+T1=300; //Initial temp in K
+T3=2500; //Final temp in K
+P1=1; //Initial pressure in N/m^2
+P3=50; //Final pressure in N/m^2
+gamma1=1.4;
+Cv=0.718;
+
+//Calculation
+r=(P3*T1)/(P1*T3); //Compression ratio
+eta=(1-(1/r^(gamma1-1))); //Standard effeciency in %
+T2=T1*((P3/P1)^((gamma1-1)/gamma1)); //Middle temperature in K
+Qs=Cv*(T3-T2); //Heat supplied in KJ/Kg
+WD=eta*Qs; //Work done KJ/Kg
+
+//Output
+printf('Compression ratio= %f \n',r);
+printf('Standard effeciency= %f percent \n',eta);
+printf('Middle temperature= %f K \n',T2);
+printf('Heat supplied= %f KJ/Kg \n',Qs);
+printf('Work done= %f KJ/Kg \n',WD);
diff --git a/3821/CH14/EX14.11/Example14_11.sce b/3821/CH14/EX14.11/Example14_11.sce
new file mode 100644
index 000000000..207b49291
--- /dev/null
+++ b/3821/CH14/EX14.11/Example14_11.sce
@@ -0,0 +1,17 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.11 Page No 316
+///Find diesel engine air standard efficiency
+//input data
+clc;
+clear;
+r=18; //compression ratio of diesel engine
+K=6; //cut-off ratio of the stroke in%
+rho=2.02;
+gamma1=1.4;
+
+///Calculation
+//diesel engine air standard efficiency
+eta=100*((1-(1/r^(gamma1-1)))*(1/gamma1*(rho^(gamma1-1)/(rho-1))));
+
+//Output
+printf('diesel engine air standard efficiency %f percent \n',eta);
diff --git a/3821/CH14/EX14.12/Example14_12.sce b/3821/CH14/EX14.12/Example14_12.sce
new file mode 100644
index 000000000..001098e9a
--- /dev/null
+++ b/3821/CH14/EX14.12/Example14_12.sce
@@ -0,0 +1,19 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.12 Page No 317
+///Find cut-off ratio
+//Input Data
+clc;
+clear;
+r=22; //compression ratio of diesel engine r=v1/v2
+r1=11; //expansion ratio r1=v4/v3
+gamma1=1.4;
+rho=1.4;
+
+//Calculation
+rho=r/r1; //cut-off ratio
+//diesel engine air standard efficiency
+eta=100*((1-(1/r^(gamma1-1)))*(1/gamma1*(rho^(gamma1-1)/(rho-1))));
+
+//Output
+printf('cut-off ratio= %f \n',rho);
+printf('diesel engine air standard efficiency= %f percent \n',eta);
diff --git a/3821/CH14/EX14.13/Example14_13.sce b/3821/CH14/EX14.13/Example14_13.sce
new file mode 100644
index 000000000..9d8a92e13
--- /dev/null
+++ b/3821/CH14/EX14.13/Example14_13.sce
@@ -0,0 +1,21 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.13 Page No 317
+///Find Compression ratio
+//Input data
+clc;
+clear;
+Vc=10/100; //Clearance volume in %
+Vs=Vc/0.1;
+K=0.05; //Cut-off of the strok in
+gamma1=1.4;
+
+//Calculation
+r=((Vs+Vc)/(Vc)); //Compression ratio
+rho=1+K*(r-1); //Cut-off ratio
+//Effeciency in %
+eta=(1-(1/r^(gamma1-1))*((1/gamma1)*(((rho^(gamma1))-1)/(rho-1))))*100;
+
+//Output
+printf('Compression ratio= %f Vs \n',r);
+printf('Cut-off ratio= %f \n',rho);
+printf('Effeciency= %f \n',eta);
diff --git a/3821/CH14/EX14.14/Example14_14.sce b/3821/CH14/EX14.14/Example14_14.sce
new file mode 100644
index 000000000..91a3dd5fc
--- /dev/null
+++ b/3821/CH14/EX14.14/Example14_14.sce
@@ -0,0 +1,23 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.14 Page No 317
+///Find air standard efficiency
+//Input data
+clc;
+clear;
+T1=50+273; //Temperature at the beginning of the compression
+T2=700+273; //Temperature at the end of the compression
+T3=2000+273; //Temperature at the beginning of the expansion
+gamma1=1.4;
+
+//Calculation
+r=((T2/T1)^(1/(gamma1-1))); //Compression ratio
+rho=(T3/T2); //Cut-off ratio
+K=((rho-1)/(r-1)); //Also cut-off ratio
+//Air standard efficiency
+eta=(1-(1/r^(gamma1-1))*((1/gamma1)*(((rho^(gamma1))-1)/(rho-1))))*100;
+
+//Output
+printf('compression ratio= %f \n',r);
+printf('cut-off ratio= %f \n',rho);
+printf('also cut-off ratio= %f \n',K);
+printf('air standard efficiency= %f percent',eta);
diff --git a/3821/CH14/EX14.15/Example14_15.sce b/3821/CH14/EX14.15/Example14_15.sce
new file mode 100644
index 000000000..436bbf20f
--- /dev/null
+++ b/3821/CH14/EX14.15/Example14_15.sce
@@ -0,0 +1,32 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.15 Page No 317
+///Find maximum temperatureof the cycle
+//Input data
+clc;
+clear;
+P1=0.1; //Diesel cycle is supplied# with air in MPa
+T1=40+273; //Diesel cycle is supplied with temperature in degree celsius
+r=18; //Compression ratio
+Qs=1500; //Heat supplied
+v1=18;
+v2=1;
+Cp=1.005;
+gamma1=1.4;
+
+
+//Calculation
+T2=T1*((v1/v2)^(gamma1-1)); //For isentropic process the temperature is
+P2=P1*((v1/v2)^(gamma1)); //For isentropic process the pressure is
+T3=(Qs/Cp)+T2; //Maximum temperatureof the cycle
+rho=T3/T2; //Cut-off ratio
+//Air standard efficiency
+eta=(1-(1/r^(gamma1-1))*((1/gamma1)*(((rho^(gamma1))-1)/(rho-1))))*100;
+NWD=(Qs*eta)*10^-2; //Net work done
+
+//Output
+printf('for isentropic process the temperature= %f K \n',T2);
+printf('for isentropic process the pressure= %f MPa \n',P2);
+printf('maximum temperatureof the cycle= %f K \n ',T3);
+printf('cut-off ratio= %f MPa \n',rho);
+printf('air standard efficiency= %f percent \n',eta);
+printf('net work done= %f KJ/Kg \n',NWD);
diff --git a/3821/CH14/EX14.16/Example14_16.sce b/3821/CH14/EX14.16/Example14_16.sce
new file mode 100644
index 000000000..835eefb04
--- /dev/null
+++ b/3821/CH14/EX14.16/Example14_16.sce
@@ -0,0 +1,42 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.16 Page No 317
+///Find constant pressure
+//Input data
+clc;
+clear;
+r=14; //compression ratio of standard diesel cycle
+P1=1; //compression stroke in bar
+T1=300; //temperature of air in k
+T3=2774; //temperature rises in k
+CP=1.005;
+v1=14;
+v2=1;
+gamma1=1.4;
+Qs=1921.43;
+R=0.287*10^3;
+
+
+//Calculation
+T2=T1*((v1/v2)^(gamma1-1)); //Constant pressure
+rho=T3/T2; //cut-off ratio
+eta=(1-(1/r^(gamma1-1))*((1/gamma1)*(((rho^(gamma1))-1)/(rho-1))))*100; //air standard efficiency
+HS=(CP*(T3-T2)); //heat supplied
+WD=(Qs*eta)*10^-2; //Net work done
+v1=(R*T1/P1)*10^-5; //characteristics gas equation
+v2=(v1/r ); //characteristics gas equation
+Sv=(v1-v2); //Swept volume
+Pme=(WD/Sv )*10^-2; //Mean effective pressur
+Pm=((P1*r)/((r-1)*(gamma1-1)))*((gamma1*(r^(gamma1-1)))*(rho-1)-((rho^(gamma1))-1)); // mean effective pressure
+
+
+//utput
+printf('constant pressure= %f K \n',T2);
+printf('cut-off ratio= %f \n ',rho);
+printf('air standard efficiency= %f percent \n',eta);
+printf('heat supplied= %f KJ/Kg \n',HS);
+printf('Net work done= %f KJ/Kg \n',WD);
+printf('characteristics gas equation= %f m^3/Kg \n',v1);
+printf('characteristics gas equation=%f m^3/Kg \n ',v2);
+printf('Swept volume=%f m^3/Kg \n ',Sv);
+printf('Mean effective pressure= %f bar \n',Pme);
+printf('Mean effective pressure= %f bar \n ',Pm);
diff --git a/3821/CH14/EX14.2/Example14_2.sce b/3821/CH14/EX14.2/Example14_2.sce
new file mode 100644
index 000000000..dea73eede
--- /dev/null
+++ b/3821/CH14/EX14.2/Example14_2.sce
@@ -0,0 +1,24 @@
+////Chapter No 14 Air Standard Cycles
+////Example 2 Page No:302
+///Find Engin work on carnot cycle
+//Input data
+clc;
+clear;
+QR=1.5; //tau=QS-QR
+ //T=Tmax-Tmin
+T=300; //temperature limit of the cycle in degree celsius
+
+
+//Calculation
+//QR=1.5*(QS-QR)
+QR=(1.5/2.5); //Engin work on carnot cycle
+eta=(1-QR); //Thermal effeciency
+Tmax=round((T/eta)-273.15); //Maximum temperataure
+Tmin=(Tmax-T); //Minimum temperataure
+
+
+//Output
+printf('Engin work on carnot cycle= %f QS \n',QR);
+printf('Thermal effeciency= %f percent \n',100*eta);
+printf('Maximum temperataure= %f degree celsius \n ',Tmax);
+printf('Minimum temperataure= %f degree celsius \n ',Tmin);
diff --git a/3821/CH14/EX14.3/Example14_3.sce b/3821/CH14/EX14.3/Example14_3.sce
new file mode 100644
index 000000000..9290b92b6
--- /dev/null
+++ b/3821/CH14/EX14.3/Example14_3.sce
@@ -0,0 +1,35 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.3 Page No 303
+///Find pressure at intermediate salient points
+//Input data
+clc;
+clear;
+//Refer figure
+
+T1=300; //Carnot engine work in minimum temperature in kelvin
+T2=750; //Carnot engine work in maximum temperature kelvin
+P2=50; //pressure of carnot engine N/m^2
+P4=1; //pressure of carnot engine N/m^2
+//Considering air as the working fluid therefore
+R=0.287; //Air as the working fluid in KJ/Kg K
+Cp=1.005; //KJ/Kg K
+Cv=0.718; //KJ/Kg K
+K=1.4;
+gamma1=1.4;
+
+//Calculation
+//T2/T1=(P2/P1)**(gamma1-1)/gamma1;
+P1=P2*(T1/T2)^(gamma1/(gamma1-1)); //Pressure at intermediate salient points(1-2) in bar
+P3=P4*(T2/T1)**(gamma1/(gamma1-1)); //Pressure at intermediate salient points(3-4) in bar
+QS=R*T2*log(P2/P3 ); //Heat supplied and rejected per Kg of air in KJ/Kg
+QR=R*T1*log(P1/P4 ); //Heat supplied and rejected per Kg of air in KJ/Kg
+W=QS-QR; //Work done in KJ/Kg
+eta=(1-(T1/T2)); //Thermal of the carnot cycle
+
+//Output
+printf('pressure at intermediate salient points(1-2)= %f bar \n',P1);
+printf('pressure at intermediate salient points(3-4)= %f bar \n',P3);
+printf('heat supplied and rejected per Kg of air(2-3)= %f KJ/Kg \n',QS);
+printf('heat supplied and rejected per Kg of air(4-1)= %f KJ/Kg \n',QR);
+printf('work done= %f KJ/Kg \n',W);
+printf('thermal of the carnot cycle= %f percent \n',100*eta);
diff --git a/3821/CH14/EX14.4/Example14_4.sce b/3821/CH14/EX14.4/Example14_4.sce
new file mode 100644
index 000000000..fa5686b73
--- /dev/null
+++ b/3821/CH14/EX14.4/Example14_4.sce
@@ -0,0 +1,31 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.4 Page No 304
+///Find Heat supplied process
+//input data
+clc;
+clear;
+T2=377+273; //Carnot cycle temperature in bar
+P2=20*10^5; //Carnot cycle pressure in bar
+V2=1;
+V1=5;
+V3=2;
+//Consider air as the working fluid therefore
+R=0.287; //In KJ/Kg K
+Cp=1.005; //In KJ/Kg K
+Cv=0.718; //In KJ/Kg K
+K=1.4;
+gamma1=1.4;
+
+//Calculation
+T1=T2*((V2/V1)^(gamma1-1)); //Minimum temp in degree celsius
+Qs=R*T2*log(V3/V2); //Heat supplied process in KJ/Kg
+QR=R*T1*log((V1/V2)*(V2/V3)*((T2/T1)^(1/(gamma1-1)))); //Heat Rejected Process in KJ/Kg
+etath=(1-(T1/T2))*100; //Thermal Effeiciency of the carnot cycle in %
+
+
+
+//Output
+printf('Minimum temp= %f degree celsius \n',T1);
+printf('Heat supplied process= %f KJ/Kg \n',Qs);
+printf('Heat Rejected Process= %f KJ/Kg \n',QR);
+printf('Thermal Effeiciency of the carnot cycle=%f percent \n',etath);
diff --git a/3821/CH14/EX14.5/Example14_5.sce b/3821/CH14/EX14.5/Example14_5.sce
new file mode 100644
index 000000000..16faa5a57
--- /dev/null
+++ b/3821/CH14/EX14.5/Example14_5.sce
@@ -0,0 +1,20 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.5 Page No 308
+///Find compression ratio
+///Input data
+clc;
+clear;
+P1=1; //Isentropic Compression in bar
+P2=20; //Isentropic Compression in bar
+//Consider air as the working fluid therefore
+gamma1=1.4;
+
+
+//Calculation
+r=(P2/P1)**(1/gamma1); //Isentropic process
+eta=100*(1-(1/(r^(gamma1-1)))); //Otto cycle air standard effeciency in %
+
+
+//Output
+printf('compression ratio= %f \n ',r);
+printf('standard efficiency= %f percent \n',eta);
diff --git a/3821/CH14/EX14.6/Example14_6.sce b/3821/CH14/EX14.6/Example14_6.sce
new file mode 100644
index 000000000..f2ee380cd
--- /dev/null
+++ b/3821/CH14/EX14.6/Example14_6.sce
@@ -0,0 +1,17 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.6 Page No 308
+///Find standard efficiency
+//Input data
+clc;
+clear;
+T1=27+273; //Initial temp in degree celsius
+T2=450+273; //Final temp in degree celsius
+gamma1=1.4;
+
+//Calculation
+r=(T2/T1)^(1/(gamma1-1)); //Isentropic process
+eta=100*(1-(1/(r^(gamma1-1)))); //Otto cycle air standard effeciency in %
+
+//Output
+printf('compression ratio= %f \n ',r);
+printf('standard efficiency= %f percent \n',eta);
diff --git a/3821/CH14/EX14.7/Example14_7.sce b/3821/CH14/EX14.7/Example14_7.sce
new file mode 100644
index 000000000..68825c667
--- /dev/null
+++ b/3821/CH14/EX14.7/Example14_7.sce
@@ -0,0 +1,21 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.7 Page No 309
+///Find Swept volume
+//Input data
+clc;
+clear;
+D=200*10^-3; //Otto cycle cylindrical bore in mm
+L=450*10^-3; //Otto cycle Stroke in mm
+vc=2*10^-3; //Clearance volume in mm^3
+gamma1=1.4;
+pi=3.142;
+
+//Calculation
+vs=(pi/4)*(D^2*L); //Swept volume
+r=((vs+vc)/vc); //Compression ratio
+eta=100*(1-(1/(r**(gamma1-1)))); //Standard efficiency
+
+//Output
+printf('Swept volume= %f m^3 \n',vs);
+printf('compression ratio= %f \n',r);
+printf('standard efficiency= %f percent \n',eta);
diff --git a/3821/CH14/EX14.8/Example14_8.sce b/3821/CH14/EX14.8/Example14_8.sce
new file mode 100644
index 000000000..eb256c643
--- /dev/null
+++ b/3821/CH14/EX14.8/Example14_8.sce
@@ -0,0 +1,44 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.8 Page No 309
+///Find Max temp of cycle
+//Input data
+clc;
+clear;
+P1=0.1*10^6; //Otto cycle air
+T1=35+273; //Otto cycle temp degree celsius
+r=9; //Compression ratio
+Qs=1800; //Supplied heat in kJ/kg
+v1=9;
+v2=1;
+R=0.287*10^3;
+gamma1=1.4;
+Cv=0.718;
+
+//Calculation
+T2=(T1*((v1/v2)^(gamma1-1))); //Temperature at point 2 in K
+P2=(P1*((v1/v2)^1.4))*10^-6; //pressure at point 2 in MPa
+T3=((Qs/Cv)+(T2)); //Max temp of cycle in degree celsius
+P3=(T3/T2*P2); //Max pressure of cycle in MPa
+eta=100*(1-(1/(r^(gamma1-1))));//Otto cycle thermal efficiency in %
+WD=(Qs*eta)*10^-2; //Work done during the cycle in KJ/Kg
+v1=((R*T1)/P1); //Char gass equation in m^3/Kg
+v2=v1/r; //Char gass equation in m^3/Kg
+Sv=v1-v2; //Swept volume in m^3/Kg
+Pme=(WD/Sv)*10^-3; //Mean effective pressure in MPa
+alpha=P3/P2; //Explosion ratio
+Pm=(((P1*r)/((r-1)*(gamma1-1)))*(((r^(gamma1-1))-1)*(alpha-1)))*10^-6;//Mean effective pressure in MPa
+
+
+//Output
+printf('Temperature at point= %f K \n',T2);
+printf('pressure at point= %f MPa \n',P2);
+printf('Max temp of cycle= %f K \n',T3);
+printf('Max pressure= %f MPa \n',P3);
+printf('Otto cycle thermal efficiency= %f percent \n',eta);
+printf('Work done during the cycle= %f KJ/Kg \n',WD);
+printf('Char gass equation= %f m^3/Kg \n',v1);
+printf('Char gass equation= %f m^3/Kg \n',v2);
+printf('Swept volume= %f m^3/Kg \n',Sv);
+printf('Mean effective pressure= %f MPa \n',Pme);
+printf('Explosion ratio= %f \n',alpha);
+printf('Mean effective pressure= %f MPa \n',Pm);
diff --git a/3821/CH14/EX14.9/Example14_9.sce b/3821/CH14/EX14.9/Example14_9.sce
new file mode 100644
index 000000000..709db7a0a
--- /dev/null
+++ b/3821/CH14/EX14.9/Example14_9.sce
@@ -0,0 +1,30 @@
+////Chapter No 14 Air Standard Cycles
+////Example No 14.9 Page No 311
+///Find Work done per Kg of air
+//Input data
+clc;
+clear;
+P1=0.1; //Beginning compression in MPa
+T1=40+273; //Beginning temp in degree celsius
+eta=0.55; //Standard effeciency in %
+QR=540; //Rejected heat in KJ/Kg
+r=7.36; //Compression ratio
+gamma1=1.4;
+Cv=0.718;
+
+//Calculation
+//eta=(1-(1/(r^(gamma-1))))
+QS=(-QR/(eta-1)); //Heat supplied/unit mass in KJ/Kg
+WD=QS-QR; //Work done per Kg of air in KJ/Kg
+T2=T1*(r^(gamma1-1)); //Temp at end of compression in K
+P2=P1*((r)^gamma1); //pressure at point 2 in MPa
+T3=(QS/Cv)+T2; //max temp of the cycle in K
+P3=(T3/T2)*P2; //max pressure of the cycle in MPa
+
+//Output
+printf('Heat supplied/unit mass= %f KJ/Kg \n',QS);
+printf('Work done per Kg of air= %f KJ/Kg \n',WD);
+printf('Temp at end of compression= %f K \n ',T2);
+printf('pressure at point two= %f MPa \n',P2);
+printf('max temp of the cycle= %f K \n',T3);
+printf('max pressure of the cycle= %f MPa \n',P3);