summaryrefslogtreecommitdiff
path: root/3814/CH6
diff options
context:
space:
mode:
Diffstat (limited to '3814/CH6')
-rw-r--r--3814/CH6/EX6.1/Ex6_1.sce23
-rw-r--r--3814/CH6/EX6.2/Ex6_2.sce31
-rw-r--r--3814/CH6/EX6.3/Ex6_3.sce39
-rw-r--r--3814/CH6/EX6.4/Ex6_4.sce26
-rw-r--r--3814/CH6/EX6.5/Ex6_5.sce29
5 files changed, 148 insertions, 0 deletions
diff --git a/3814/CH6/EX6.1/Ex6_1.sce b/3814/CH6/EX6.1/Ex6_1.sce
new file mode 100644
index 000000000..25f37424a
--- /dev/null
+++ b/3814/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,23 @@
+// determine velocity of whirl at inlet and diameter of the wheel at inlet
+// ex 6.1 pgno.143
+clc
+H=8 // head
+g=9.8 // gravitional acceleration
+t1=0.96 // peripheral volocity at inlet
+t2=0.36 // flow velocity
+u1=t1*sqrt(2*g*H)
+mprintf('Peripheral velocity u1= %f m/s',round(u1))
+vlf= t2*sqrt(2*g*H)
+mprintf('\n Flow velocity V1f= %f m/s',vlf)
+nh=0.85 // hydraulic efficiency
+Vlw=(g*H*nh)/(u1)
+mprintf(' \n V1W= %f m/s',Vlw)
+a1=vlf/Vlw // inlet angle tan
+mprintf('\n alpha1 =%f ',a1)
+mprintf('tan a1 = %d',atand(a1))
+N=150 // runner speed
+D1=(60*u1)/(%pi*N) // diameter
+mprintf( '\n D1= %f m',D1)
+gamm =9800 // constant gamma
+Q= (N*1000)/(gamm*H*nh) //flow rate
+mprintf('\n Q = %f m3/s',Q)
diff --git a/3814/CH6/EX6.2/Ex6_2.sce b/3814/CH6/EX6.2/Ex6_2.sce
new file mode 100644
index 000000000..83caba697
--- /dev/null
+++ b/3814/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,31 @@
+// determine head and power output if angular velocity from fig2=
+// ex 6.2 pgno.142
+clc
+r1=300 // mm inlet radius
+r2=150 //mm outer radius
+Q=0.05 // m3/s flow rate
+a1=30 //degree inlet guide blade
+a2=80// degree angle
+v1=6 // m/s velocity
+v2=3//m/s velocity
+t=25 // angular velocity
+n=0.9
+n1=0.8
+g=9.8 //
+gammam=9800 // constant gammma
+u1=(r1/1000)*t // velocity
+u2=(r2/1000)*t
+mprintf('\n u1 = %f m/s',u1)
+mprintf(' \n u2 = %f m/s',u2)
+Vlw= v1*cosd(a1)
+mprintf('\n Vlw = v1cos a1 = %f m/s',Vlw)
+V2w=v2*cosd(a2)
+mprintf(' \n V2w = V2cos a2 = %f m/s',V2w)
+E=((u1*Vlw)-(u2*V2w))/(g) // Eduler's head
+mprintf('\n E = %f m',E)
+H=E/n // head
+mprintf('\n H = %f m',H)
+pin=(gammam*Q*H)/1000 // power input
+mprintf('\n Power input= gQH = %f W',pin)
+pout=pin*n1 // power out
+mprintf('\n power output =effiency*pin =%f W',pout)
diff --git a/3814/CH6/EX6.3/Ex6_3.sce b/3814/CH6/EX6.3/Ex6_3.sce
new file mode 100644
index 000000000..75d3a77cd
--- /dev/null
+++ b/3814/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,39 @@
+// design a= francis turbine
+// ex 6.3 pgno.146
+clc
+h=68 // head
+x=0.15 // flow ratio
+N1=750 // speed
+n2=0.1 // breadth to diameter ratio at inlet
+p=330 //power output
+ga=9800 //
+g1=9.8
+d2=((1/2)*600)
+eh=0.94 // hydraulic efficiency
+eo=0.85 // overall efficiency
+ar=0.6 // area
+k1=0.94 // ratio
+Q1=(p*1000)/(eo*ga*h) // volume of flow rate
+mprintf('Q= %f m3/s',Q1)
+vf=(x*(sqrt(2*g1*h))) // velocity of flow
+mprintf(' \n Vf= %f m/s',vf)
+D=sqrt((Q1)/(eh*%pi*n2*vf)) // diameter
+mprintf('\n D1 = %f m',D)
+B1=D*n2 // width
+mprintf('\n B1= %f m',B1)
+u=(%pi*D*N1)/60
+mprintf('\n u1 = piD1N/60 =%f m/s',u)
+Vl=(g1*eh*h)/u
+mprintf('\n Vlw = %f m/s',Vl)
+a=atand(vf/Vl)//area
+mprintf(' \n tana1= %f degree ',a)
+d1=1/2
+U=(%pi*d2*N1)/60
+mprintf('\n u2 = %e m/s',U)
+b2=atand(vf/11.7)
+mprintf('\n tanb2 = %f degree',b2)
+// assume k1=k2 v1f=v2f
+n3=(ar^2*n2)/(0.3^2)
+mprintf('\n n2 = %f',n3)
+B2=d2*n3
+mprintf('\n B2 = %f mm',B2)
diff --git a/3814/CH6/EX6.4/Ex6_4.sce b/3814/CH6/EX6.4/Ex6_4.sce
new file mode 100644
index 000000000..447552d77
--- /dev/null
+++ b/3814/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,26 @@
+// determine guide vane angle and runner vane angle at exit for radial discharge
+// ex 6.4 pgno.149
+clc
+H=12 // m
+Q=0.28 //m3/s
+Vf=0.15 // velocity flow
+N=300 // rpm
+nh=0.8 // percen
+g=9.8 //gravitional acceleration
+r2=1 // runner van
+r1=2
+V1f=Vf*(sqrt(2*g*H)) // velocity flow
+v2f=V1f
+mprintf(' velocity flow V1f=V2f = %f m/s',V1f)
+Vlw=sqrt((nh*g*H))
+mprintf(' \n V1w = %f m/s',Vlw)
+u1=Vlw
+u2=u1*(r2/r1)
+mprintf(' \n u2 = %f m/s',u2)
+b2=atand(v2f/u2)
+mprintf(' \n tanb2= %f degree',b2)
+a1=atand(V1f/u1)
+mprintf(' \n tana1 = V1f/u1 = %f degree',a1)
+
+
+
diff --git a/3814/CH6/EX6.5/Ex6_5.sce b/3814/CH6/EX6.5/Ex6_5.sce
new file mode 100644
index 000000000..ccf43d844
--- /dev/null
+++ b/3814/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,29 @@
+
+//determine the shaft power hydraulic efficiency
+//ex 6.5 pgno.151
+clc
+N=1260 // runner speed
+Q=0.4 // flow rate
+H=92 // head
+g=9.8 //constant
+a1=20 // van angle
+R1=(2*600)/1000 // radius at inlet
+r1=600/1000
+B1=30/1000
+p=1000 // power
+hp=360e3
+V1f=(Q/(%pi*R1*B1)) // velocity of flow
+mprintf(' V1f = %f m/s',V1f)
+V1w = V1f/(tand(20)) // velocity of width
+mprintf(' \n V1w = %f m/s',V1w)
+T=Q*p*V1w*r1 // temperature
+mprintf('\n T = %d N-m',T)
+w=(2*N*%pi)/60 // width
+S=T*w // shaft power
+mprintf('\n shaft power %d Watts',S)
+n=(S/hp)*100 //spped
+mprintf('\n overall efficiency = shaft power/hydraulic power %f percentage',n)
+Wt=(w*sqrt(S/1000))/((g*H)^(5/4))
+mprintf('\n wt = %f',Wt)
+Ns=(N*sqrt(S/1000))/(H^(5/4))
+mprintf('\n Ns = %f',Ns)