summaryrefslogtreecommitdiff
path: root/380/CH1
diff options
context:
space:
mode:
Diffstat (limited to '380/CH1')
-rwxr-xr-x380/CH1/EX1.1/1_1.txt14
-rwxr-xr-x380/CH1/EX1.1/1_1_R.txt8
-rwxr-xr-x380/CH1/EX1.1/ex1_1.sce14
-rwxr-xr-x380/CH1/EX1.2/1_2_R.txt10
-rwxr-xr-x380/CH1/EX1.2/2_2_2.pngbin0 -> 6926 bytes
-rwxr-xr-x380/CH1/EX1.2/ex1_2.sce39
-rwxr-xr-x380/CH1/EX1.3/1_3.txt25
-rwxr-xr-x380/CH1/EX1.3/1_3_R.txt3
-rwxr-xr-x380/CH1/EX1.3/ex1_3.sce25
-rwxr-xr-x380/CH1/EX1.4/1_4.txt50
-rwxr-xr-x380/CH1/EX1.4/1_4_R.txt55
-rwxr-xr-x380/CH1/EX1.4/ex1_4.sce50
-rwxr-xr-x380/CH1/EX1.6/1_6.txt27
-rwxr-xr-x380/CH1/EX1.6/1_6_R.txt15
-rwxr-xr-x380/CH1/EX1.6/ex1_6.sce27
-rwxr-xr-x380/CH1/EX1.7/1_7.txt28
-rwxr-xr-x380/CH1/EX1.7/1_7_R.txt16
-rwxr-xr-x380/CH1/EX1.7/ex1_7.sce28
18 files changed, 434 insertions, 0 deletions
diff --git a/380/CH1/EX1.1/1_1.txt b/380/CH1/EX1.1/1_1.txt
new file mode 100755
index 000000000..4f0028786
--- /dev/null
+++ b/380/CH1/EX1.1/1_1.txt
@@ -0,0 +1,14 @@
+// Caption:finding the max power delivered
+//Exa:1.1
+close;
+clc;
+clear;
+//on applying KVL we get
+i=75/50;//in Amperes
+v_th=(30*i)+25;//Equivalent Thevenin voltage (in Volts)
+r_th=(20*30)/(20+30);//Equivalent thevenin resistance (in Ohms)
+R_load=r_th;//Load resistance=thevenin resistance (in Ohms)
+disp(R_load,'load resistance (in ohms)=') //in ohms
+i_load=v_th/(r_th+R_load);//in Amperes
+p_max=(i_load^2)*r_th;//in Watts
+disp(p_max,'max power (in watts)=')//maximum power dissipiated \ No newline at end of file
diff --git a/380/CH1/EX1.1/1_1_R.txt b/380/CH1/EX1.1/1_1_R.txt
new file mode 100755
index 000000000..acd6b6b9c
--- /dev/null
+++ b/380/CH1/EX1.1/1_1_R.txt
@@ -0,0 +1,8 @@
+ load resistance (in ohms)=
+
+ 12.
+
+ max power (in watts)=
+
+ 102.08333
+ \ No newline at end of file
diff --git a/380/CH1/EX1.1/ex1_1.sce b/380/CH1/EX1.1/ex1_1.sce
new file mode 100755
index 000000000..4f0028786
--- /dev/null
+++ b/380/CH1/EX1.1/ex1_1.sce
@@ -0,0 +1,14 @@
+// Caption:finding the max power delivered
+//Exa:1.1
+close;
+clc;
+clear;
+//on applying KVL we get
+i=75/50;//in Amperes
+v_th=(30*i)+25;//Equivalent Thevenin voltage (in Volts)
+r_th=(20*30)/(20+30);//Equivalent thevenin resistance (in Ohms)
+R_load=r_th;//Load resistance=thevenin resistance (in Ohms)
+disp(R_load,'load resistance (in ohms)=') //in ohms
+i_load=v_th/(r_th+R_load);//in Amperes
+p_max=(i_load^2)*r_th;//in Watts
+disp(p_max,'max power (in watts)=')//maximum power dissipiated \ No newline at end of file
diff --git a/380/CH1/EX1.2/1_2_R.txt b/380/CH1/EX1.2/1_2_R.txt
new file mode 100755
index 000000000..fcd4f6c0a
--- /dev/null
+++ b/380/CH1/EX1.2/1_2_R.txt
@@ -0,0 +1,10 @@
+
+ v(t)=14.142cos1000t
+
+ magnitude of current (in Amperes)
+
+ 1.9999808
+
+ phase of current (in Degrees)
+
+ 53.13010 \ No newline at end of file
diff --git a/380/CH1/EX1.2/2_2_2.png b/380/CH1/EX1.2/2_2_2.png
new file mode 100755
index 000000000..73cca2fe6
--- /dev/null
+++ b/380/CH1/EX1.2/2_2_2.png
Binary files differ
diff --git a/380/CH1/EX1.2/ex1_2.sce b/380/CH1/EX1.2/ex1_2.sce
new file mode 100755
index 000000000..2ee330d2d
--- /dev/null
+++ b/380/CH1/EX1.2/ex1_2.sce
@@ -0,0 +1,39 @@
+//Caption:Finding the current in the circuit and plot V vs T and I vs T curve
+//Exa:1.2
+clc;
+clear;
+close;
+//Refer to figure 1.5a
+L=1*10^-3;//henery
+R=3;//ohms
+C=200*10^-6;//faraday
+disp("v(t)=14.142cos1000t")
+V_m=14.142;//Peak value of applied voltage (in Volts)
+V=V_m/sqrt(2);//RMS value of applied voltage (in Volts)
+//On comparing with standard equation v(t)=acoswt
+w=1000;//in radian/second
+//Inductive impedance=jwL
+Z_L=%i*w*L;//in ohms
+//capacitive impedance=-j/wC
+Z_c=-%i/(w*C);//in ohms
+//Impedance of the circuit is given by
+Z=Z_L+Z_c+R;//in ohms
+I=V/Z//Current in the circuit//in Amperes
+r=real(I);
+i=imag(I);
+magn_I=sqrt((r^2)+(i^2));//magnitude of current (in Amperes)
+phase_I=atand(i/r);//phase of current (in degree)
+disp(magn_I,'magnitude of current (in Amperes)');
+disp(phase_I,'phase of current (in Degrees)');
+xset('window',1);
+xtitle("current -time plot","time (in Seconds)","current (in Amperes)");
+z=linspace(0,20,10);
+x=linspace(0,%pi,100);
+z=2.828*cos((1000*x)+(atan(i/r)));
+plot(x,z);
+xset('window',2);
+xtitle("voltage-time plot","time (in Seconds)","voltage (in Volts)");
+x=linspace(0,%pi,100);
+y=linspace(0,20,10);
+y=14.142*cos(1000*x);
+plot(x,y); \ No newline at end of file
diff --git a/380/CH1/EX1.3/1_3.txt b/380/CH1/EX1.3/1_3.txt
new file mode 100755
index 000000000..9f3d3501f
--- /dev/null
+++ b/380/CH1/EX1.3/1_3.txt
@@ -0,0 +1,25 @@
+//Caption:Finding the value of capacitor
+//Ex no.1.3
+clc;
+clear;
+close;
+I=10;//Current drawn by the load (in Amperes)
+pf1=0.5;//lagging power factor
+pf2=0.8;
+Q1=acosd(pf1);
+Q2=acosd(pf2);
+I_L=10*(cosd(-Q1)+%i *sind(-Q1));//in Amperes
+V=120;//source voltage (in Volts)
+f=60;//frequency of source (in Hertz)
+//Refer to fig 1.6(b)
+//I_Lc=I_L+I_c
+S=V*conj (I_L);//complex power absorbed by load (in Watts)
+//On connecting capacitor across load current (I) have 0.8pf lagging
+I_Lco=real (S)/(V*pf2);// current supplied by load after connecting capacitor (in Amperes)
+I_Lc=I_Lco*(cosd(-Q2)+%i*(sind(-Q2)));// in Amperes
+I_c=I_Lc-I_L;//in Amperes
+Z_c=V/I_c;//capacitive impedance (in Ohms)
+//Z_c=-jX_c
+X_c=Z_c/(-%i);//Capacitive reactance
+C=1/(2*%pi*f*X_c);
+disp(real (C),'Value of capacitance (in Farad) is=') \ No newline at end of file
diff --git a/380/CH1/EX1.3/1_3_R.txt b/380/CH1/EX1.3/1_3_R.txt
new file mode 100755
index 000000000..333d0eaf8
--- /dev/null
+++ b/380/CH1/EX1.3/1_3_R.txt
@@ -0,0 +1,3 @@
+ Value of capacitance (in Farad) is=
+
+ 0.0001085 \ No newline at end of file
diff --git a/380/CH1/EX1.3/ex1_3.sce b/380/CH1/EX1.3/ex1_3.sce
new file mode 100755
index 000000000..9f3d3501f
--- /dev/null
+++ b/380/CH1/EX1.3/ex1_3.sce
@@ -0,0 +1,25 @@
+//Caption:Finding the value of capacitor
+//Ex no.1.3
+clc;
+clear;
+close;
+I=10;//Current drawn by the load (in Amperes)
+pf1=0.5;//lagging power factor
+pf2=0.8;
+Q1=acosd(pf1);
+Q2=acosd(pf2);
+I_L=10*(cosd(-Q1)+%i *sind(-Q1));//in Amperes
+V=120;//source voltage (in Volts)
+f=60;//frequency of source (in Hertz)
+//Refer to fig 1.6(b)
+//I_Lc=I_L+I_c
+S=V*conj (I_L);//complex power absorbed by load (in Watts)
+//On connecting capacitor across load current (I) have 0.8pf lagging
+I_Lco=real (S)/(V*pf2);// current supplied by load after connecting capacitor (in Amperes)
+I_Lc=I_Lco*(cosd(-Q2)+%i*(sind(-Q2)));// in Amperes
+I_c=I_Lc-I_L;//in Amperes
+Z_c=V/I_c;//capacitive impedance (in Ohms)
+//Z_c=-jX_c
+X_c=Z_c/(-%i);//Capacitive reactance
+C=1/(2*%pi*f*X_c);
+disp(real (C),'Value of capacitance (in Farad) is=') \ No newline at end of file
diff --git a/380/CH1/EX1.4/1_4.txt b/380/CH1/EX1.4/1_4.txt
new file mode 100755
index 000000000..ca08efb71
--- /dev/null
+++ b/380/CH1/EX1.4/1_4.txt
@@ -0,0 +1,50 @@
+//Caption:Determine the line current and phase currents,power absorbed by the load and power dessipated by transmission line
+//Ex no:1.4
+clc;
+clear;
+close;
+//Make delta -star conversion of load
+Z_L=1+%i*2;//Impedance of each wire (in Ohms)
+Z_p=(177-%i*246);//per-phase impedance (in Ohms)
+Z_pY=(177-%i*246)/3;//per-phase impedance in Y-connection (in Ohms)
+Z=Z_L+Z_pY;//Total per phase impedance (in Ohms)
+V=866/sqrt(3);//Per-phase voltage (in Volts)
+V_phase=0;
+I=V/Z;//Current in the circuit (in Ampere)
+r=real(I);
+i=imag(I);
+I_mag=sqrt((r^2)+(i^2));//magnitude of current (in Amperes)
+I_phase=atand(i/r);//phase of current (in Degrees)
+pf=cosd(I_phase);//power factor
+//Refer to fig:1.13(b)
+//Source are connected in star,so phase currents = line currents
+I_na_mag=I_mag;//Magnitude of Source current through n-a (in Amperes)
+I_nb_mag=I_mag;//Magnitude of Source current through n-b (in Amperes)
+I_nc_mag=I_mag;//Magnitude of Source current through n-c (in Amperes)
+I_na_phase=I_phase+(0);//phase angle of current through n-a (in Degree)
+I_nb_phase=I_phase+(-120);//phase angle of current through n-b (in Degree)
+I_nc_phase=I_phase+(120);//phase angle of current through n-c (in Degree)
+disp(I_na_mag,'I_na_mag (in Amperes)=');
+disp(I_na_phase,'I_na_phase (in Degrees)=');
+disp(I_nb_mag,'I_nb_mag (in Amperes)=');
+disp(I_nb_phase,'I_nb_phase (in Degrees)=');
+disp(I_nc_mag,'I_nc_mag (in Amperes)=');
+disp(I_nc_phase,'I_nc_phase (in Degrees)=');
+//Load is connected in delta network
+I_AB_mag=I_mag/sqrt(3);//magnitude of current through AB (in Amperes)
+I_BC_mag=I_mag/sqrt(3);//magnitude of current through BC (in Amperes)
+I_CA_mag=I_mag/sqrt(3);//magnitude of current through CA (in Amperes)
+I_AB_phase=I_na_phase+30;//phase angle of current through AB (in Degrees)
+I_BC_phase=I_nb_phase+30;//phase angle of current through BC (in Degrees)
+I_CA_phase=I_nb_phase-90;//phase angle of current through CA (in Degrees)
+disp(I_AB_mag,'I_AB_mag (in Amperes)=');
+disp(I_AB_phase,'I_AB_phase (in Degrees)=');
+disp(I_BC_mag,'I_BC_mag (in Amperes)=');
+disp(I_BC_phase,'I_BC_phase (in Degrees)=');
+disp(I_CA_mag,'I_CA_mag (in Amperes)=');
+disp(I_CA_phase,'I_CA_phase (in Degrees)=');
+I_AB=I_AB_mag*(cosd(I_AB_phase)+%i*sind(I_AB_phase));//(in Amperes)
+P_load=3*I_AB_mag^2*real(Z_p);//in watts
+disp(real (P_load),'Power dissipated (in Watts)=');
+P_line=3*I_mag^2*real(Z_L);//in watts
+disp(P_line,'Power dissipated by transmission line (in Watts)=') \ No newline at end of file
diff --git a/380/CH1/EX1.4/1_4_R.txt b/380/CH1/EX1.4/1_4_R.txt
new file mode 100755
index 000000000..3b20a54e5
--- /dev/null
+++ b/380/CH1/EX1.4/1_4_R.txt
@@ -0,0 +1,55 @@
+ I_na_mag (in Amperes)=
+
+ 4.9998533
+
+ I_na_phase (in Degrees)=
+
+ 53.130102
+
+ I_nb_mag (in Amperes)=
+
+ 4.9998533
+
+ I_nb_phase (in Degrees)=
+
+ - 66.869898
+
+ I_nc_mag (in Amperes)=
+
+ 4.9998533
+
+ I_nc_phase (in Degrees)=
+
+ 173.1301
+
+ I_AB_mag (in Amperes)=
+
+ 2.8866667
+
+ I_AB_phase (in Degrees)=
+
+ 83.130102
+
+ I_BC_mag (in Amperes)=
+
+ 2.8866667
+
+ I_BC_phase (in Degrees)=
+
+ - 36.869898
+
+ I_CA_mag (in Amperes)=
+
+ 2.8866667
+
+ I_CA_phase (in Degrees)=
+
+ - 156.8699
+
+ Power dissipated (in Watts)=
+
+ 4424.7404
+
+ Power dissipated by transmission line (in Watts)=
+
+ 74.9956 \ No newline at end of file
diff --git a/380/CH1/EX1.4/ex1_4.sce b/380/CH1/EX1.4/ex1_4.sce
new file mode 100755
index 000000000..ca08efb71
--- /dev/null
+++ b/380/CH1/EX1.4/ex1_4.sce
@@ -0,0 +1,50 @@
+//Caption:Determine the line current and phase currents,power absorbed by the load and power dessipated by transmission line
+//Ex no:1.4
+clc;
+clear;
+close;
+//Make delta -star conversion of load
+Z_L=1+%i*2;//Impedance of each wire (in Ohms)
+Z_p=(177-%i*246);//per-phase impedance (in Ohms)
+Z_pY=(177-%i*246)/3;//per-phase impedance in Y-connection (in Ohms)
+Z=Z_L+Z_pY;//Total per phase impedance (in Ohms)
+V=866/sqrt(3);//Per-phase voltage (in Volts)
+V_phase=0;
+I=V/Z;//Current in the circuit (in Ampere)
+r=real(I);
+i=imag(I);
+I_mag=sqrt((r^2)+(i^2));//magnitude of current (in Amperes)
+I_phase=atand(i/r);//phase of current (in Degrees)
+pf=cosd(I_phase);//power factor
+//Refer to fig:1.13(b)
+//Source are connected in star,so phase currents = line currents
+I_na_mag=I_mag;//Magnitude of Source current through n-a (in Amperes)
+I_nb_mag=I_mag;//Magnitude of Source current through n-b (in Amperes)
+I_nc_mag=I_mag;//Magnitude of Source current through n-c (in Amperes)
+I_na_phase=I_phase+(0);//phase angle of current through n-a (in Degree)
+I_nb_phase=I_phase+(-120);//phase angle of current through n-b (in Degree)
+I_nc_phase=I_phase+(120);//phase angle of current through n-c (in Degree)
+disp(I_na_mag,'I_na_mag (in Amperes)=');
+disp(I_na_phase,'I_na_phase (in Degrees)=');
+disp(I_nb_mag,'I_nb_mag (in Amperes)=');
+disp(I_nb_phase,'I_nb_phase (in Degrees)=');
+disp(I_nc_mag,'I_nc_mag (in Amperes)=');
+disp(I_nc_phase,'I_nc_phase (in Degrees)=');
+//Load is connected in delta network
+I_AB_mag=I_mag/sqrt(3);//magnitude of current through AB (in Amperes)
+I_BC_mag=I_mag/sqrt(3);//magnitude of current through BC (in Amperes)
+I_CA_mag=I_mag/sqrt(3);//magnitude of current through CA (in Amperes)
+I_AB_phase=I_na_phase+30;//phase angle of current through AB (in Degrees)
+I_BC_phase=I_nb_phase+30;//phase angle of current through BC (in Degrees)
+I_CA_phase=I_nb_phase-90;//phase angle of current through CA (in Degrees)
+disp(I_AB_mag,'I_AB_mag (in Amperes)=');
+disp(I_AB_phase,'I_AB_phase (in Degrees)=');
+disp(I_BC_mag,'I_BC_mag (in Amperes)=');
+disp(I_BC_phase,'I_BC_phase (in Degrees)=');
+disp(I_CA_mag,'I_CA_mag (in Amperes)=');
+disp(I_CA_phase,'I_CA_phase (in Degrees)=');
+I_AB=I_AB_mag*(cosd(I_AB_phase)+%i*sind(I_AB_phase));//(in Amperes)
+P_load=3*I_AB_mag^2*real(Z_p);//in watts
+disp(real (P_load),'Power dissipated (in Watts)=');
+P_line=3*I_mag^2*real(Z_L);//in watts
+disp(P_line,'Power dissipated by transmission line (in Watts)=') \ No newline at end of file
diff --git a/380/CH1/EX1.6/1_6.txt b/380/CH1/EX1.6/1_6.txt
new file mode 100755
index 000000000..42c3fce0d
--- /dev/null
+++ b/380/CH1/EX1.6/1_6.txt
@@ -0,0 +1,27 @@
+//Caption:Determine load current,load voltage,load power and power factor
+//Exa:1.6
+clc;
+clear;
+close;
+//Refer to the fig:1.16
+R=40;//in ohms
+L=%i*30;//in ohms
+V=117*((cosd(0)+%i*sind(0)));//in Volts
+//Equivalent load impedance is obtained by parallel combination of Resistance R and Inductance L
+Z_L=(R*L)/(R+L);//load impedance (in Ohms)
+Z1=0.6+%i*16.8;// in Ohms
+Z=Z_L+Z1;//Equivalent impedance of circuit (in Ohms)
+I=V/Z;//current through load (in Amperes)
+r1=real(I);
+i1=imag(I);
+I_mag=sqrt(r1^2+i1^2);//magnitude of current flowing through load (in Amperes)
+disp(I_mag,'Reading of ammeter (in Amperes)=');
+V_L=I*Z_L;//voltage across load (in Volts)
+r2=real(V_L);
+i2=imag(V_L);
+V_L_mag=sqrt(r2^2+i2^2);//magnitude of voltage across load (in Volts)
+disp(V_L_mag,'Reading of voltmeter (in Volts)=');
+P=real (V_L*conj(I));//Power developed (in Watts)
+disp(P,'Reading of wattmeter (in Watts)=');
+pf=P/(V_L_mag*I_mag);//Power factor
+disp(pf,'power factor=') \ No newline at end of file
diff --git a/380/CH1/EX1.6/1_6_R.txt b/380/CH1/EX1.6/1_6_R.txt
new file mode 100755
index 000000000..cbecdde31
--- /dev/null
+++ b/380/CH1/EX1.6/1_6_R.txt
@@ -0,0 +1,15 @@
+ Reading of ammeter (in Amperes)=
+
+ 3.
+
+ Reading of voltmeter (in Volts)=
+
+ 72.
+
+ Reading of wattmeter (in Watts)=
+
+ 129.6
+
+ power factor=
+
+ 0.6 \ No newline at end of file
diff --git a/380/CH1/EX1.6/ex1_6.sce b/380/CH1/EX1.6/ex1_6.sce
new file mode 100755
index 000000000..42c3fce0d
--- /dev/null
+++ b/380/CH1/EX1.6/ex1_6.sce
@@ -0,0 +1,27 @@
+//Caption:Determine load current,load voltage,load power and power factor
+//Exa:1.6
+clc;
+clear;
+close;
+//Refer to the fig:1.16
+R=40;//in ohms
+L=%i*30;//in ohms
+V=117*((cosd(0)+%i*sind(0)));//in Volts
+//Equivalent load impedance is obtained by parallel combination of Resistance R and Inductance L
+Z_L=(R*L)/(R+L);//load impedance (in Ohms)
+Z1=0.6+%i*16.8;// in Ohms
+Z=Z_L+Z1;//Equivalent impedance of circuit (in Ohms)
+I=V/Z;//current through load (in Amperes)
+r1=real(I);
+i1=imag(I);
+I_mag=sqrt(r1^2+i1^2);//magnitude of current flowing through load (in Amperes)
+disp(I_mag,'Reading of ammeter (in Amperes)=');
+V_L=I*Z_L;//voltage across load (in Volts)
+r2=real(V_L);
+i2=imag(V_L);
+V_L_mag=sqrt(r2^2+i2^2);//magnitude of voltage across load (in Volts)
+disp(V_L_mag,'Reading of voltmeter (in Volts)=');
+P=real (V_L*conj(I));//Power developed (in Watts)
+disp(P,'Reading of wattmeter (in Watts)=');
+pf=P/(V_L_mag*I_mag);//Power factor
+disp(pf,'power factor=') \ No newline at end of file
diff --git a/380/CH1/EX1.7/1_7.txt b/380/CH1/EX1.7/1_7.txt
new file mode 100755
index 000000000..1563e53ed
--- /dev/null
+++ b/380/CH1/EX1.7/1_7.txt
@@ -0,0 +1,28 @@
+//Caption:Determine the reading of two wattmeters,total power and power factor
+//Exa:1.7
+clc;
+clear;
+close;
+//transforming delta connected source into an equivalent Star-connected source
+V_s=1351;//source voltage (in Volts)
+V=1351/sqrt(3);//in volts
+V_phase=0;
+Z=360+%i*150;//per-phase impedance(in ohms)
+I=V/Z;//current in the circuit (in Amperes)
+r=real(I);
+i=imag(I);
+I_mag=sqrt(r^2+i^2);//in ampere
+I_phase=atand(i/r);//degree
+//Refer to fig 1.19(a)
+V_ab=1351*(cosd(-30)+%i*sind(-30));//in Volts
+I_aA=2*(cosd(I_phase)+%i*sind(I_phase));//in Amperes
+V_cb=1351*(cosd(-90)+%i*sind(-90));//in Volts
+I_cC=2*(cosd(I_phase-120)+%i*sind(I_phase-120));//in Amperes
+P1=real(V_ab*conj(I_aA));//reading of wattmeter 1 (in Watts)
+disp(P1,'Reading of wattmeter W1 (in Watts) =');
+P2=real(V_cb*conj(I_cC));//reading of wattmeter 2 (in Watts)
+disp(P2,'Reading of wattmeter W2 (in Watts)=');
+P=P1+P2;//total power developed (in Watts)
+disp(P,'Total power developed (in Watts)=' );
+pf=cosd(I_phase);//power factor
+disp(pf,'power factor=') \ No newline at end of file
diff --git a/380/CH1/EX1.7/1_7_R.txt b/380/CH1/EX1.7/1_7_R.txt
new file mode 100755
index 000000000..1cbd730c6
--- /dev/null
+++ b/380/CH1/EX1.7/1_7_R.txt
@@ -0,0 +1,16 @@
+ Reading of wattmeter W1 (in Watts) =
+
+ 2679.616
+
+ Reading of wattmeter W2 (in Watts)=
+
+ 1640.3852
+
+ Total power developed (in Watts)=
+
+ 4320.0012
+
+ power factor=
+
+ 0.9230769
+ \ No newline at end of file
diff --git a/380/CH1/EX1.7/ex1_7.sce b/380/CH1/EX1.7/ex1_7.sce
new file mode 100755
index 000000000..1563e53ed
--- /dev/null
+++ b/380/CH1/EX1.7/ex1_7.sce
@@ -0,0 +1,28 @@
+//Caption:Determine the reading of two wattmeters,total power and power factor
+//Exa:1.7
+clc;
+clear;
+close;
+//transforming delta connected source into an equivalent Star-connected source
+V_s=1351;//source voltage (in Volts)
+V=1351/sqrt(3);//in volts
+V_phase=0;
+Z=360+%i*150;//per-phase impedance(in ohms)
+I=V/Z;//current in the circuit (in Amperes)
+r=real(I);
+i=imag(I);
+I_mag=sqrt(r^2+i^2);//in ampere
+I_phase=atand(i/r);//degree
+//Refer to fig 1.19(a)
+V_ab=1351*(cosd(-30)+%i*sind(-30));//in Volts
+I_aA=2*(cosd(I_phase)+%i*sind(I_phase));//in Amperes
+V_cb=1351*(cosd(-90)+%i*sind(-90));//in Volts
+I_cC=2*(cosd(I_phase-120)+%i*sind(I_phase-120));//in Amperes
+P1=real(V_ab*conj(I_aA));//reading of wattmeter 1 (in Watts)
+disp(P1,'Reading of wattmeter W1 (in Watts) =');
+P2=real(V_cb*conj(I_cC));//reading of wattmeter 2 (in Watts)
+disp(P2,'Reading of wattmeter W2 (in Watts)=');
+P=P1+P2;//total power developed (in Watts)
+disp(P,'Total power developed (in Watts)=' );
+pf=cosd(I_phase);//power factor
+disp(pf,'power factor=') \ No newline at end of file