summaryrefslogtreecommitdiff
path: root/3792/CH5/EX5.15/Ex5_15.sce
diff options
context:
space:
mode:
Diffstat (limited to '3792/CH5/EX5.15/Ex5_15.sce')
-rw-r--r--3792/CH5/EX5.15/Ex5_15.sce26
1 files changed, 26 insertions, 0 deletions
diff --git a/3792/CH5/EX5.15/Ex5_15.sce b/3792/CH5/EX5.15/Ex5_15.sce
new file mode 100644
index 000000000..9e7b29fc3
--- /dev/null
+++ b/3792/CH5/EX5.15/Ex5_15.sce
@@ -0,0 +1,26 @@
+// SAMPLE PROBLEM 5/15
+clc;funcprot(0);
+// Given data
+N=1500;// rev/min
+theta_1=60;// degree
+r=5/12;// ft
+ABbar=14/12;// ft
+
+// Calculation
+omega=(2*%pi*N)/60;// rad/s
+a_B=r*omega^2;// ft/sec^2
+omega_AB=29.5;// rad/sec
+a_AB_n=ABbar*omega_AB^2;
+// If we adopt an algebraic solution using the geometry of the acceleration polygon, we first compute the angle between AB and the horizontal. With the law of sines, this angle becomes 18.02 degree.
+theta_2=18.02;// degree
+function[X]=acceleration(y)
+ X(1)=((a_B*cosd(theta_1))+(a_AB_n*cosd(theta_2))-(y(2)*sind(theta_2)))-y(1);
+ X(2)=((a_B*sind(theta_1))-(a_AB_n*sind(theta_2))-(y(2)*cosd(theta_2)))-0;
+endfunction
+y=[1000 1000];
+z=fsolve(y,acceleration)
+a_AB_t=z(2);// ft/sec^2
+a_A=z(1);// ft/sec^2
+r=ABbar;// ft
+alpha_AB=a_AB_t/r;// rad/sec^2
+printf("\nThe acceleration of the piston A,a_A=%4.0f ft/sec^2 \nThe angular acceleration of the connecting rod AB,alpha_AB=%4.0f rad/sec^2",a_A,alpha_AB);