summaryrefslogtreecommitdiff
path: root/3785/CH6
diff options
context:
space:
mode:
Diffstat (limited to '3785/CH6')
-rw-r--r--3785/CH6/EX6.1/Ex6_1.sce15
-rw-r--r--3785/CH6/EX6.10/Ex6_10.sce15
-rw-r--r--3785/CH6/EX6.11/Ex6_11.sce14
-rw-r--r--3785/CH6/EX6.12/Ex6_12.sce12
-rw-r--r--3785/CH6/EX6.13/Ex6_13.sce12
-rw-r--r--3785/CH6/EX6.14/Ex6_14.sce11
-rw-r--r--3785/CH6/EX6.2/Ex6_2.sce12
-rw-r--r--3785/CH6/EX6.4/Ex6_4.sce14
-rw-r--r--3785/CH6/EX6.5/Ex6_5.sce13
-rw-r--r--3785/CH6/EX6.6/Ex6_6.sce10
-rw-r--r--3785/CH6/EX6.7/Ex6_7.sce8
-rw-r--r--3785/CH6/EX6.8/Ex6_8.sce15
-rw-r--r--3785/CH6/EX6.9/Ex6_9.sce23
13 files changed, 174 insertions, 0 deletions
diff --git a/3785/CH6/EX6.1/Ex6_1.sce b/3785/CH6/EX6.1/Ex6_1.sce
new file mode 100644
index 000000000..7cc96c70d
--- /dev/null
+++ b/3785/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,15 @@
+// Example 6_1
+clc;funcprot(0);
+// Given data
+a=1.0;// s^-1
+b=0.1;// s^-1
+c=2.0;// s^-1,where a,b,c are constants
+z=1;// m
+mu=1.82*10^-5;// Pa s
+
+// Calculation
+tau_xz=mu*(a-(2*b*z));// The non-zero viscous stress component in Pa
+tau_zx=tau_xz;// The non-zero viscous stress component in Pa
+tau_yz=mu*c;// The non-zero viscous stress component in Pa
+tau_zy=tau_yz;// The non-zero viscous stress component in Pa
+printf("The numerical values of all the viscous stress components,tau_xz=tau_zx=%1.3e Pa & tau_yz=tau_zy=%1.2e Pa",tau_xz,tau_yz);
diff --git a/3785/CH6/EX6.10/Ex6_10.sce b/3785/CH6/EX6.10/Ex6_10.sce
new file mode 100644
index 000000000..cb8de56f8
--- /dev/null
+++ b/3785/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,15 @@
+// Example 6_10
+clc;funcprot(0);
+// Given data
+D=1.0*10^-6;// Diameter of solid particle in m
+rho_p=2*10^3;// The density of particle in kg/m^3
+rho_f=1.206;// The density of air in kg/m^3
+mu=1.80*10^-5;// Viscosity in Pa s
+g=9.807;// The acceleration due to gravity in m/s^2
+
+// Calculation
+// (a)
+V_f=(2*(rho_p-rho_f)*g*D^2)/(9*mu);// The free fall velocity in m/s
+// (b)
+Re_D=(rho_f*V_f*D)/mu;// The Reynolds number
+printf("\n(a)The free fall velocity,V_f=%1.3e m/s \n(b)The Reynolds number,Re_D=%1.3e",V_f,Re_D);
diff --git a/3785/CH6/EX6.11/Ex6_11.sce b/3785/CH6/EX6.11/Ex6_11.sce
new file mode 100644
index 000000000..9a6d98202
--- /dev/null
+++ b/3785/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,14 @@
+// Example 6_11
+clc;funcprot(0);
+// Given data
+D_i=3;// The inner diameter of hollow cylinder in cm
+D_o=10;// The outer diameter of hollow cylinder in cm
+L=20;// Length in cm
+Q=1;// The fuel flow rate in l/min
+mu=2*10^-6;// The fuel viscosity in Pa s
+k=1*10^-6;// The fuel filter permeability in m^2
+
+// Calculation
+// Assume dp=p_in-p_out
+dp=((mu*Q/60)/(2*%pi*k*L/100))*log(D_o/D_i);// The pressure drop in Pa
+printf("\n The pressure drop,p_in-p_out=%1.3e Pa",dp);
diff --git a/3785/CH6/EX6.12/Ex6_12.sce b/3785/CH6/EX6.12/Ex6_12.sce
new file mode 100644
index 000000000..8e540bd87
--- /dev/null
+++ b/3785/CH6/EX6.12/Ex6_12.sce
@@ -0,0 +1,12 @@
+// Example 6_12
+clc;funcprot(0);
+// Given data
+// From Example 6_4
+h=0.1;// The gap betwen the shaft and the bearing in mm
+mu=6.7*10^-5;// Viscosity in Pa/s
+rho=8.0*10^2;// kg/m^3
+
+//Calculation
+// (b)
+t=(rho*(h*10^-3)^2)/mu;// s
+printf("\nThe numerical value of t is %0.4f s",t);
diff --git a/3785/CH6/EX6.13/Ex6_13.sce b/3785/CH6/EX6.13/Ex6_13.sce
new file mode 100644
index 000000000..a5a7c25b5
--- /dev/null
+++ b/3785/CH6/EX6.13/Ex6_13.sce
@@ -0,0 +1,12 @@
+// Example 6_13
+clc;funcprot(0);
+// Given data
+D=0.5;// The diameter of cirrcular disk in m
+mu=1.0;// The viscosity of oil in Pa s
+rho=9.0*10^2;// Density in kg/m^3
+omega=1*10^3;// The angular frequency in s^-1
+phi=1*10^-3;// The angular amplitude
+
+// Calculation
+P=(%pi/32)*mu*(omega*phi)^2*((omega*rho)/(2*mu))^(1/2)*D^4;// W
+printf("\nThe power absorbed by the vibration damper,P=%1.3f W",P);
diff --git a/3785/CH6/EX6.14/Ex6_14.sce b/3785/CH6/EX6.14/Ex6_14.sce
new file mode 100644
index 000000000..9d2de4083
--- /dev/null
+++ b/3785/CH6/EX6.14/Ex6_14.sce
@@ -0,0 +1,11 @@
+// Example 6_14
+clc;funcprot(0);
+// Given data
+// L=10h;
+Lbyh=10;
+
+// Calculation
+// Re=(V*h)/nu;
+Re=Lbyh*(12/1.328)^2;// Reynolds number
+printf("For flow velocities having Vh/v «%3.1f. the pressure drop would be given by (a),while for Vh/v »%3.1f it would be given by (b).",Re,Re);
+// The answer provided in the text book is wrong \ No newline at end of file
diff --git a/3785/CH6/EX6.2/Ex6_2.sce b/3785/CH6/EX6.2/Ex6_2.sce
new file mode 100644
index 000000000..b8d854ee6
--- /dev/null
+++ b/3785/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,12 @@
+// Example 6_2
+clc;funcprot(0);
+// Given data
+a=1.0;// s^-1
+b=0.1;// s^-1
+c=2.0;// s^-1 where a,b,c are constants
+z=1;// m
+mu=1.82*10^-5;// Pa s
+
+// Calculation
+delp=mu*(2*b);// Pa/m
+printf("[delp=%1.2e Pa/m]i_x",delp)
diff --git a/3785/CH6/EX6.4/Ex6_4.sce b/3785/CH6/EX6.4/Ex6_4.sce
new file mode 100644
index 000000000..14c8919ac
--- /dev/null
+++ b/3785/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,14 @@
+// Example 6_4
+clc;funcprot(0);
+// Given data
+D=10;// The diameter of circular shaft in cm
+L=10;// The bearing length in cm
+h=0.1;// The gap betwen the shaft and the bearing in mm
+mu=6.7*10^-5;// Viscosity in Pa/s
+n=3600;// rpm
+
+// Calculation
+omega=(2*%pi*n)/60;// s^-1
+T=(%pi*mu*omega*(L/100)*(D/100)^3)/(4*(h/1000));// The torque applied to the shaft in Nm
+P=T*omega;// The power consumed in the bearing by friction in W
+printf("\nThe torque applied to the shaft,T=%1.3e Nm \nThe power consumed in the bearing by friction,P=%1.3f W",T,P);
diff --git a/3785/CH6/EX6.5/Ex6_5.sce b/3785/CH6/EX6.5/Ex6_5.sce
new file mode 100644
index 000000000..91d1add8d
--- /dev/null
+++ b/3785/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,13 @@
+// Example 6_5
+clc;funcprot(0);
+// Given data
+W=1.0;// Width of concrete slabs in m
+L=0.1;// Depth in m
+h=1.0;// Width of a crack in mm
+mu=1.13*10^-3;// Pa s
+rho=1*10^3;// The density of water in kg/m^3
+g=9.807;// The acceleration due to gravity in m/s^2
+
+// Calculation
+Q=(rho*g*(h*10^-3)^3*W)/(12*mu);// m^3/s (or) l/s
+printf("\nThe volume flow rate of rainwater through the crack,Q=%1.3e m^3/s (or) %0.4f l/s",Q,Q*1000);
diff --git a/3785/CH6/EX6.6/Ex6_6.sce b/3785/CH6/EX6.6/Ex6_6.sce
new file mode 100644
index 000000000..8bd416b17
--- /dev/null
+++ b/3785/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,10 @@
+// Example 6_6
+clc;funcprot(0);
+// Given data
+V=0.1;// The speed of coating liquid in m/s
+nu=1.0*10^-6;// The liquid kinematic viscosity in m^2/s
+g=9.807;// The acceleration due to gravity in m/s^2
+
+// Calculation
+h=sqrt((2*nu*V)/g);// m
+printf("\nThe film thickness h=%1.3e m",h);
diff --git a/3785/CH6/EX6.7/Ex6_7.sce b/3785/CH6/EX6.7/Ex6_7.sce
new file mode 100644
index 000000000..36a6aa120
--- /dev/null
+++ b/3785/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,8 @@
+// Example 6_7
+clc;funcprot(0);
+// Solution
+// P_out=(3*%pi*mu*W*omega^2*D^3)/(16*h);
+// P_in=(5*%pi*mu*W*omega^2*D^3)/(8*h);
+// n_p=P_out/P_in;
+n_p=(((3*%pi)/16)/((5*%pi)/8))*100;//The pump efficiency in %
+printf("\nThe pump efficiency,n_p=%0.0f percentage",n_p);
diff --git a/3785/CH6/EX6.8/Ex6_8.sce b/3785/CH6/EX6.8/Ex6_8.sce
new file mode 100644
index 000000000..dbe396d20
--- /dev/null
+++ b/3785/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,15 @@
+// Example 6_8
+clc;funcprot(0);
+// Given data
+H=3;// Distance in m
+L=30;// Length in cm
+D=3;// Diameter in mm
+V=100;// cm^3
+t=152;// s
+g=9.807;// The acceleration due to gravity in m/s^2
+
+// Calculation
+Q=(V*10^-6)/t;// The flow rate in m^3/s
+nu=((%pi*((D*10^-3)^4)*g)/(128*Q))*(1+(H/L));// The kinematic viscosity of the oil mixture in m/s^2
+printf("\nThe kinematic viscosity of the oil mixture is %1.3e m^2/s",nu);
+// The answer provided in the text book is wrong
diff --git a/3785/CH6/EX6.9/Ex6_9.sce b/3785/CH6/EX6.9/Ex6_9.sce
new file mode 100644
index 000000000..9bf257ee8
--- /dev/null
+++ b/3785/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,23 @@
+// Example 6_9
+clc;funcprot(0);
+// Given data
+a=1.5;// Radius in cm
+W=3;// Length in cm
+hbar=5*10^-5;// Clearance in m
+mu=2*10^-2;// Viscosity of lubricating oil in Pa s
+rho=9*10^2;// Density of lubricating oil in kg/m^3
+N=3600;// rpm
+n=0.5;// The eccentricity
+
+// Calculation
+// (a)
+omega=(2*%pi*N)/60;// s^-1
+L=(12*%pi*mu*omega*W*10^-2)*((a*10^-2)^3/(hbar)^2)*(n/((sqrt(1-n^2))*(2+n^2)));// The load force in N
+// (b)
+T=(4*%pi*mu*omega*W*10^-2)*((a*10^-2)^3/(hbar))*((1+(2*n^2))/((sqrt(1-n^2))*(2+n^2)));// The torque in Nm
+P=omega*T;// Power in W
+// (c)
+Re_h=(rho*omega*a*10^-2*hbar*(1-n^2))/(mu*(2+n^2));// Reynolds number
+printf("\n(a)The maximum load F=%1.3e N \n(b)The torque,T=%0.4f Nm \n The frictional power of the bearing,P=%2.2f W \n(c)The reynolds number,Re_h=%2.2f",L,T,P,Re_h);
+Re_h=((a*10^-2)/hbar)
+// The answer provided in the text book is wrong