summaryrefslogtreecommitdiff
path: root/3785/CH10
diff options
context:
space:
mode:
Diffstat (limited to '3785/CH10')
-rw-r--r--3785/CH10/EX10.3/Ex10_3.sce32
-rw-r--r--3785/CH10/EX10.4/Ex10_4.sce14
-rw-r--r--3785/CH10/EX10.5/Ex10_5.sce19
-rw-r--r--3785/CH10/EX10.6/Ex10_6.sce9
4 files changed, 74 insertions, 0 deletions
diff --git a/3785/CH10/EX10.3/Ex10_3.sce b/3785/CH10/EX10.3/Ex10_3.sce
new file mode 100644
index 000000000..25dfe6663
--- /dev/null
+++ b/3785/CH10/EX10.3/Ex10_3.sce
@@ -0,0 +1,32 @@
+// Example 10_3
+clc;funcprot(0);
+// Given data
+L_p=100;// Length in m
+L_m=2;// The model length in m
+v_m=5*10^-2;// Displaced volume in m^3
+A_wm=0.9*1;// Wetted area in m^2
+rho_m=1*10^3;// kg/m^3
+V_m=1.1;// m/s
+D_m=2.66;// The drag force in N
+rho_p=1.03*10^3;// kg/m^3
+SR=1/50;
+nu=1*10^-6;// m^2/s
+
+// Calculation
+// (a)
+V_p=V_m/(sqrt(SR));
+V_pn=V_p*(3600/(1.852*10^3));// naut.mi/h
+// (b)
+Re_Lm=(V_m*L_m)/nu;// Reynolds number
+C_Dm=0.455/(log10(Re_Lm))^2.58;// The drag coefficient
+D_fm=((1/2)*rho_m*V_m^2*A_wm)*C_Dm;// Drag force in N
+D_wm=D_m-D_fm;// N
+D_wp=D_wm*(rho_p/rho_m)*(1/SR)^3;// N
+A_wp=A_wm*(1/SR)^2;// m^2
+Re_Lp=(V_p*L_p)/nu;// Reynolds number
+C_Dp=0.455/(log10(Re_Lp))^2.58;// The drag coefficient
+D_fp=((1/2)*rho_p*V_p^2*A_wp)*C_Dp;// Drag force in N
+D_p=D_wp+D_fp;// Drag force in N
+// (c)
+P_p=(D_p*V_p)/10^6;// The power in kW
+printf("\n(a)The corresponding speed V_p=%2.2f naut.mi/h \n(b)The drag force V_p in ocean water,D_p=%1.3e N \n(c)The propulsive power,P=%1.3f MW",V_pn,D_p,P_p);
diff --git a/3785/CH10/EX10.4/Ex10_4.sce b/3785/CH10/EX10.4/Ex10_4.sce
new file mode 100644
index 000000000..7dd7f7c5d
--- /dev/null
+++ b/3785/CH10/EX10.4/Ex10_4.sce
@@ -0,0 +1,14 @@
+// Example 10_4
+clc;funcprot(0);
+// Given data
+V_wbyomegaD_m=0.1;
+C_pm=0.50;// The power coefficient
+V_w=10;// The wind speed in m/s
+P_wtp=100;// kW
+rho=1.2;// The density of air in kg/m^3
+
+// Calculation
+omega_p=sqrt((%pi*C_pm*rho*V_w^5)/(8*P_wtp*10^3*V_wbyomegaD_m^2));// s^-2
+omega=omega_p*(60/(2*%pi));// RPM
+D_p=(1/V_wbyomegaD_m)*(V_w/omega_p);// m
+printf("\nThe turbine diameter,D_p=%2.1f m",D_p);
diff --git a/3785/CH10/EX10.5/Ex10_5.sce b/3785/CH10/EX10.5/Ex10_5.sce
new file mode 100644
index 000000000..a5d0bb4e9
--- /dev/null
+++ b/3785/CH10/EX10.5/Ex10_5.sce
@@ -0,0 +1,19 @@
+// Example 10_5
+clc;funcprot(0);
+// Given data
+Q=1000;// GPM
+h=100;// Head in m
+g=9.807;// The acceleration due to gravity in m/s^2
+// Reading values from figure 10.5
+C_Q=7*10^-3;
+C_h=0.116;
+C_p=1.16*10^-3;
+rho=1*10^3;// The density of water in kg/m^3
+
+// Calculation
+Q=Q*((3.785*10^-3)/60);// m^3/s
+omega=((g*h)^(3/4)*(C_Q)^(1/2))/(Q^(1/2)*(C_h)^(3/4));// s^-1
+omega_rpm=omega*(60/(2*%pi));// rpm
+D=(Q/(omega*C_Q));// The diameter D in m
+P=(rho*omega^3*D^5*C_p);// The power in kW
+printf("\nThe pump speed=%4.0f \nDiameter,D=%0.4f m \nThe power=%2.2f kW",omega_rpm,D,P);
diff --git a/3785/CH10/EX10.6/Ex10_6.sce b/3785/CH10/EX10.6/Ex10_6.sce
new file mode 100644
index 000000000..476476205
--- /dev/null
+++ b/3785/CH10/EX10.6/Ex10_6.sce
@@ -0,0 +1,9 @@
+// Example 10_6
+clc;funcprot(0);
+// Given data
+C_Du=1.4;// Drag coefficient of the upwind facing cup
+C_Dd=0.4;// Drag coefficient of the downwind facing cup
+
+// Calculation
+omegaRbyV=sqrt((C_Du-C_Dd)/(C_Du+(4*C_Dd)));// The dimensionless angular speed
+printf("\nThe dimensionless angular speed at which the anemometer rotates is %0.4f.",omegaRbyV)