summaryrefslogtreecommitdiff
path: root/3776/CH4
diff options
context:
space:
mode:
Diffstat (limited to '3776/CH4')
-rw-r--r--3776/CH4/EX4.16/Ex4_16.sce15
-rw-r--r--3776/CH4/EX4.3/Ex4_3.sce15
-rw-r--r--3776/CH4/EX4.4/Ex4_4.sce17
-rw-r--r--3776/CH4/EX4.5/Ex4_5.sce21
-rw-r--r--3776/CH4/EX4.7/Ex4_7.sce4
-rw-r--r--3776/CH4/EX4.9/Ex4_9.sce28
6 files changed, 51 insertions, 49 deletions
diff --git a/3776/CH4/EX4.16/Ex4_16.sce b/3776/CH4/EX4.16/Ex4_16.sce
index d62fbcd29..0d9997618 100644
--- a/3776/CH4/EX4.16/Ex4_16.sce
+++ b/3776/CH4/EX4.16/Ex4_16.sce
@@ -1,12 +1,13 @@
clear
-//Given
+//Given
dia_out = 10 //mm- outer diameter of shaft
-dia_in = 8 //mm- inner diameter of shaft
-c_out = dia_out/2 //mm - outer Radius of shaft
-c_in = dia_in/2 //mm - inner radius of shaft
-T = 40 //N/mm -Torque in the shaft
-//caliculations
-
+dia_in = 8 //mm- inner diameter of shaft
+c_out = dia_out/2 //mm - outer Radius of shaft
+c_in = dia_in/2 //mm - inner radius of shaft
+T = 40 //N/mm -Torque in the shaft
+//calculations
+dia_mean = (dia_out+dia_in)/2
+dia_diff = dia_out-dia_in
J = 3.14*((dia_out**4)- (dia_in**4))/32 //mm4
shear_T_max = T*c_out*(10**3)/J // The maximum torsion shear in the shaft
shear_T_min = T*c_in*(10**3)/J // The maximum torsion shear in the shaft
diff --git a/3776/CH4/EX4.3/Ex4_3.sce b/3776/CH4/EX4.3/Ex4_3.sce
index 7ad10bbe6..86dcaed1c 100644
--- a/3776/CH4/EX4.3/Ex4_3.sce
+++ b/3776/CH4/EX4.3/Ex4_3.sce
@@ -1,14 +1,15 @@
clear
-//Given
+//Given
dia_out = 20 //mm- outer diameter of shaft
-dia_in = 16 //mm- inner diameter of shaft
-c_out = dia_out/2 //mm - outer Radius of shaft
-c_in = dia_in/2 //mm - inner radius of shaft
-T = 40 //N/mm -Torque in the shaft
-//caliculations
+dia_in = 16 //mm- inner diameter of shaft
+c_out = dia_out/2 //mm - outer Radius of shaft
+c_in = dia_in/2 //mm - inner radius of shaft
+T = 40 //N/mm -Torque in the shaft
+//calculations
J = 3.14*((dia_out**4)- (dia_in**4))/32 //mm4
shear_T_max = T*c_out*(10**3)/J // The maximum torsion shear in the shaft
shear_T_min = T*c_in*(10**3)/J // The maximum torsion shear in the shaft
-printf("\n The maximum shear due to torsion is %0.2f MPa",shear_T_max)
+printf("\n The maximum shear due to torsion is %e MPa",shear_T_max)
+ //answer in textbook is wrong
printf("\n The minimum shear due to torsion is %0.0f MPa",shear_T_min)
diff --git a/3776/CH4/EX4.4/Ex4_4.sce b/3776/CH4/EX4.4/Ex4_4.sce
index 105784f04..d6f4a901b 100644
--- a/3776/CH4/EX4.4/Ex4_4.sce
+++ b/3776/CH4/EX4.4/Ex4_4.sce
@@ -1,16 +1,15 @@
clear
//Given
-hp = 10 // horse power of motor
-f = 30 // given
-shear_T = 55 //MPa - The maximum shearing in the shaft
-//caliculations
+hp = 10 // horse power of motor
+f = 30 // given
+shear_T = 55 //MPa - The maximum shear in the shaft
+//calculations
-T = 119*hp/f // N.m The torsion in the shaft
+T = 119*hp/f // N.m The torsion in the shaft
//j/c=T/shear_T=K
k = T*(10**3)/shear_T //mm3
//c3=2K/3.14
-c = ((2*k/3)**0.33) //mm - The radius of the shaft
-diamter = 2*c //mm - The diameter of the shaft
-printf("\n The Diameter of the shaft used is %0.2f mm",diamter)
+c = ((2*k/3)**0.33) //mm - The radius of the shaft
+diameter = 2*c //mm - The diameter of the shaft
+printf("\n The Diameter of the shaft used is %0.2f mm",diameter)
printf("\n For practical purposes, a 16-mm shaft would probably be selected")
-
diff --git a/3776/CH4/EX4.5/Ex4_5.sce b/3776/CH4/EX4.5/Ex4_5.sce
index 8d033dc9a..edd0d1fe6 100644
--- a/3776/CH4/EX4.5/Ex4_5.sce
+++ b/3776/CH4/EX4.5/Ex4_5.sce
@@ -1,23 +1,24 @@
clear
-//Given
+//Given
hp = 200 //Horse power
stress_sh = 10000 //psi- shear stress
-rpm_1 = 20.0 // The rpm at which this shaft1 operates
+rpm_1 = 20.0 // The rpm at which this shaft1 operates
rpm_2 = 20000.0 // The rpm at which this shaft2 operates
T_1= hp*63000.0/rpm_1 //in-lb Torsion due to rpm1
T_2= hp*63000/rpm_2 //in-lb Torsion due to rpm1
-//caliculations
+//calculations
//j/c=T/shear_T=K
-k_1= T_1/stress_sh //mm3
+k_1= T_1/stress_sh //cu.in
//c3=2K/3.14
-c_1= ((2*k_1/3)**0.33) //mm - The radius of the shaft
-diamter_1 = 2*c_1 //mm - The diameter of the shaft
-printf("\n The Diameter of the shaft1 is %0.2f mm",diamter_1)
+//c_1= ((2*k_1/3)**0.33) //mm - The radius of the shaft
+diamter_1 = (16*k_1/%pi)**(1/3) //mm - The diameter of the shaft
+printf("\n The Diameter of the shaft1 is %0.2f in",diamter_1)
//j/c=T/shear_T=K
k_2= T_2/stress_sh //mm3
//c3=2K/3.14
-c_2= ((2*k_2/3)**0.33) //mm - The radius of the shaft
-diamter_2 = 2*c_2 //mm - The diameter of the shaft
-printf("\n The Diameter of the shaft2 is %0.3f mm",diamter_2)
+//c_2= ((2*k_2/3)**0.33) //mm - The radius of the shaft
+diamter_2 = (16*k_2/%pi)**(1/3) //mm - The diameter of the shaft
+
+printf("\n The Diameter of the shaft2 is %0.3f in",diamter_2)
diff --git a/3776/CH4/EX4.7/Ex4_7.sce b/3776/CH4/EX4.7/Ex4_7.sce
index 6b437ff50..2aa479f09 100644
--- a/3776/CH4/EX4.7/Ex4_7.sce
+++ b/3776/CH4/EX4.7/Ex4_7.sce
@@ -10,8 +10,8 @@ l_cd = 300 //mm - length of cd
l_de = 500.0 //mm - length of de
d_1 = 25 //mm - outer diameter
d_2 = 50 //mm - inner diameter
-G = 80 //Gpa -shear modulus
-//Caliculations
+G = 80 //GPa -shear modulus
+//calculations
J_ab = 3.14*(d_1**4)/32 //mm4
J_bc = 3.14*(d_1**4)/32 //mm4
diff --git a/3776/CH4/EX4.9/Ex4_9.sce b/3776/CH4/EX4.9/Ex4_9.sce
index 5260a4497..31b57e941 100644
--- a/3776/CH4/EX4.9/Ex4_9.sce
+++ b/3776/CH4/EX4.9/Ex4_9.sce
@@ -1,30 +1,30 @@
clear
-//given
-//its a statistally indeterminant
-//we will take of one of the support
-//Given
-T_ab = 0 //N.m - torsion in AB
+//given
+//its a statistally indeterminant
+//we will take of one of the support
+//Given
+T_ab = 0 //N.m - torsion in AB
T_bc = 150 //N.m - torsion in BC
T_cd = 150 //N.m - torsion in CD
T_de = 1150 //N.m - torsion in DE
l_ab = 250 //mm - length of AB
l_bc = 200 //mm - length of BC
-l_cd = 300 //mm - length of cd
+l_cd = 300 //mm - length of cd
l_de = 500.0//mm - length of de
-d_1 = 25 //mm - outer diameter
+d_1 = 25 //mm - outer diameter
d_2 = 50 //mm - inner diameter
-//Caliculations
+//calculations
J_ab = 3.14*(d_1**4)/32 //mm4
J_bc = 3.14*(d_1**4)/32 //mm4
J_cd = 3.14*(d_2**4 - d_1**4)/32 //mm4
J_de = 3.14*(d_2**4 - d_1**4)/32 //mm4
-G = 80 //Gpa -shear modulus
-rad = T_ab*l_ab/(J_ab*G)+ T_bc*l_bc/(J_bc*G)+ T_cd*l_cd/(J_cd*G)+ T_de*l_de/(J_de*G)
+G = 80 //GPa -shear modulus
+rad = T_ab*l_ab/(J_ab*G)+ T_bc*l_bc/(J_bc*G)+ T_cd*l_cd/(J_cd*G)+ T_de*l_de/(J_de*G)
//now lets consider T_A then the torsion is only T_A
// T_A*(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) +rad = 0
-// since there will be no displacement
-T_A =-rad/(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) //Torsion at A
+// since there will be no displacement
+T_A =rad/(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) //Torsion at A
T_B = 1150 - T_A //n-m F_X = 0 torsion at B
-printf("\n The Torsion at rigid end A is %0.2f N-m",T_A)
-printf("\n The Torsion at rigid end B is %0.2f N-m",T_B)
+printf("\n The Torsion at rigid end A is %0.0f N-m",T_A)
+printf("\n The Torsion at rigid end B is %d N-m",T_B)