diff options
Diffstat (limited to '3776/CH4')
-rw-r--r-- | 3776/CH4/EX4.16/Ex4_16.sce | 15 | ||||
-rw-r--r-- | 3776/CH4/EX4.3/Ex4_3.sce | 15 | ||||
-rw-r--r-- | 3776/CH4/EX4.4/Ex4_4.sce | 17 | ||||
-rw-r--r-- | 3776/CH4/EX4.5/Ex4_5.sce | 21 | ||||
-rw-r--r-- | 3776/CH4/EX4.7/Ex4_7.sce | 4 | ||||
-rw-r--r-- | 3776/CH4/EX4.9/Ex4_9.sce | 28 |
6 files changed, 51 insertions, 49 deletions
diff --git a/3776/CH4/EX4.16/Ex4_16.sce b/3776/CH4/EX4.16/Ex4_16.sce index d62fbcd29..0d9997618 100644 --- a/3776/CH4/EX4.16/Ex4_16.sce +++ b/3776/CH4/EX4.16/Ex4_16.sce @@ -1,12 +1,13 @@ clear -//Given +//Given dia_out = 10 //mm- outer diameter of shaft -dia_in = 8 //mm- inner diameter of shaft -c_out = dia_out/2 //mm - outer Radius of shaft -c_in = dia_in/2 //mm - inner radius of shaft -T = 40 //N/mm -Torque in the shaft -//caliculations - +dia_in = 8 //mm- inner diameter of shaft +c_out = dia_out/2 //mm - outer Radius of shaft +c_in = dia_in/2 //mm - inner radius of shaft +T = 40 //N/mm -Torque in the shaft +//calculations +dia_mean = (dia_out+dia_in)/2 +dia_diff = dia_out-dia_in J = 3.14*((dia_out**4)- (dia_in**4))/32 //mm4 shear_T_max = T*c_out*(10**3)/J // The maximum torsion shear in the shaft shear_T_min = T*c_in*(10**3)/J // The maximum torsion shear in the shaft diff --git a/3776/CH4/EX4.3/Ex4_3.sce b/3776/CH4/EX4.3/Ex4_3.sce index 7ad10bbe6..86dcaed1c 100644 --- a/3776/CH4/EX4.3/Ex4_3.sce +++ b/3776/CH4/EX4.3/Ex4_3.sce @@ -1,14 +1,15 @@ clear -//Given +//Given dia_out = 20 //mm- outer diameter of shaft -dia_in = 16 //mm- inner diameter of shaft -c_out = dia_out/2 //mm - outer Radius of shaft -c_in = dia_in/2 //mm - inner radius of shaft -T = 40 //N/mm -Torque in the shaft -//caliculations +dia_in = 16 //mm- inner diameter of shaft +c_out = dia_out/2 //mm - outer Radius of shaft +c_in = dia_in/2 //mm - inner radius of shaft +T = 40 //N/mm -Torque in the shaft +//calculations J = 3.14*((dia_out**4)- (dia_in**4))/32 //mm4 shear_T_max = T*c_out*(10**3)/J // The maximum torsion shear in the shaft shear_T_min = T*c_in*(10**3)/J // The maximum torsion shear in the shaft -printf("\n The maximum shear due to torsion is %0.2f MPa",shear_T_max) +printf("\n The maximum shear due to torsion is %e MPa",shear_T_max) + //answer in textbook is wrong printf("\n The minimum shear due to torsion is %0.0f MPa",shear_T_min) diff --git a/3776/CH4/EX4.4/Ex4_4.sce b/3776/CH4/EX4.4/Ex4_4.sce index 105784f04..d6f4a901b 100644 --- a/3776/CH4/EX4.4/Ex4_4.sce +++ b/3776/CH4/EX4.4/Ex4_4.sce @@ -1,16 +1,15 @@ clear //Given -hp = 10 // horse power of motor -f = 30 // given -shear_T = 55 //MPa - The maximum shearing in the shaft -//caliculations +hp = 10 // horse power of motor +f = 30 // given +shear_T = 55 //MPa - The maximum shear in the shaft +//calculations -T = 119*hp/f // N.m The torsion in the shaft +T = 119*hp/f // N.m The torsion in the shaft //j/c=T/shear_T=K k = T*(10**3)/shear_T //mm3 //c3=2K/3.14 -c = ((2*k/3)**0.33) //mm - The radius of the shaft -diamter = 2*c //mm - The diameter of the shaft -printf("\n The Diameter of the shaft used is %0.2f mm",diamter) +c = ((2*k/3)**0.33) //mm - The radius of the shaft +diameter = 2*c //mm - The diameter of the shaft +printf("\n The Diameter of the shaft used is %0.2f mm",diameter) printf("\n For practical purposes, a 16-mm shaft would probably be selected") - diff --git a/3776/CH4/EX4.5/Ex4_5.sce b/3776/CH4/EX4.5/Ex4_5.sce index 8d033dc9a..edd0d1fe6 100644 --- a/3776/CH4/EX4.5/Ex4_5.sce +++ b/3776/CH4/EX4.5/Ex4_5.sce @@ -1,23 +1,24 @@ clear -//Given +//Given hp = 200 //Horse power stress_sh = 10000 //psi- shear stress -rpm_1 = 20.0 // The rpm at which this shaft1 operates +rpm_1 = 20.0 // The rpm at which this shaft1 operates rpm_2 = 20000.0 // The rpm at which this shaft2 operates T_1= hp*63000.0/rpm_1 //in-lb Torsion due to rpm1 T_2= hp*63000/rpm_2 //in-lb Torsion due to rpm1 -//caliculations +//calculations //j/c=T/shear_T=K -k_1= T_1/stress_sh //mm3 +k_1= T_1/stress_sh //cu.in //c3=2K/3.14 -c_1= ((2*k_1/3)**0.33) //mm - The radius of the shaft -diamter_1 = 2*c_1 //mm - The diameter of the shaft -printf("\n The Diameter of the shaft1 is %0.2f mm",diamter_1) +//c_1= ((2*k_1/3)**0.33) //mm - The radius of the shaft +diamter_1 = (16*k_1/%pi)**(1/3) //mm - The diameter of the shaft +printf("\n The Diameter of the shaft1 is %0.2f in",diamter_1) //j/c=T/shear_T=K k_2= T_2/stress_sh //mm3 //c3=2K/3.14 -c_2= ((2*k_2/3)**0.33) //mm - The radius of the shaft -diamter_2 = 2*c_2 //mm - The diameter of the shaft -printf("\n The Diameter of the shaft2 is %0.3f mm",diamter_2) +//c_2= ((2*k_2/3)**0.33) //mm - The radius of the shaft +diamter_2 = (16*k_2/%pi)**(1/3) //mm - The diameter of the shaft + +printf("\n The Diameter of the shaft2 is %0.3f in",diamter_2) diff --git a/3776/CH4/EX4.7/Ex4_7.sce b/3776/CH4/EX4.7/Ex4_7.sce index 6b437ff50..2aa479f09 100644 --- a/3776/CH4/EX4.7/Ex4_7.sce +++ b/3776/CH4/EX4.7/Ex4_7.sce @@ -10,8 +10,8 @@ l_cd = 300 //mm - length of cd l_de = 500.0 //mm - length of de d_1 = 25 //mm - outer diameter d_2 = 50 //mm - inner diameter -G = 80 //Gpa -shear modulus -//Caliculations +G = 80 //GPa -shear modulus +//calculations J_ab = 3.14*(d_1**4)/32 //mm4 J_bc = 3.14*(d_1**4)/32 //mm4 diff --git a/3776/CH4/EX4.9/Ex4_9.sce b/3776/CH4/EX4.9/Ex4_9.sce index 5260a4497..31b57e941 100644 --- a/3776/CH4/EX4.9/Ex4_9.sce +++ b/3776/CH4/EX4.9/Ex4_9.sce @@ -1,30 +1,30 @@ clear -//given -//its a statistally indeterminant -//we will take of one of the support -//Given -T_ab = 0 //N.m - torsion in AB +//given +//its a statistally indeterminant +//we will take of one of the support +//Given +T_ab = 0 //N.m - torsion in AB T_bc = 150 //N.m - torsion in BC T_cd = 150 //N.m - torsion in CD T_de = 1150 //N.m - torsion in DE l_ab = 250 //mm - length of AB l_bc = 200 //mm - length of BC -l_cd = 300 //mm - length of cd +l_cd = 300 //mm - length of cd l_de = 500.0//mm - length of de -d_1 = 25 //mm - outer diameter +d_1 = 25 //mm - outer diameter d_2 = 50 //mm - inner diameter -//Caliculations +//calculations J_ab = 3.14*(d_1**4)/32 //mm4 J_bc = 3.14*(d_1**4)/32 //mm4 J_cd = 3.14*(d_2**4 - d_1**4)/32 //mm4 J_de = 3.14*(d_2**4 - d_1**4)/32 //mm4 -G = 80 //Gpa -shear modulus -rad = T_ab*l_ab/(J_ab*G)+ T_bc*l_bc/(J_bc*G)+ T_cd*l_cd/(J_cd*G)+ T_de*l_de/(J_de*G) +G = 80 //GPa -shear modulus +rad = T_ab*l_ab/(J_ab*G)+ T_bc*l_bc/(J_bc*G)+ T_cd*l_cd/(J_cd*G)+ T_de*l_de/(J_de*G) //now lets consider T_A then the torsion is only T_A // T_A*(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) +rad = 0 -// since there will be no displacement -T_A =-rad/(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) //Torsion at A +// since there will be no displacement +T_A =rad/(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) //Torsion at A T_B = 1150 - T_A //n-m F_X = 0 torsion at B -printf("\n The Torsion at rigid end A is %0.2f N-m",T_A) -printf("\n The Torsion at rigid end B is %0.2f N-m",T_B) +printf("\n The Torsion at rigid end A is %0.0f N-m",T_A) +printf("\n The Torsion at rigid end B is %d N-m",T_B) |