summaryrefslogtreecommitdiff
path: root/3776/CH10
diff options
context:
space:
mode:
Diffstat (limited to '3776/CH10')
-rw-r--r--3776/CH10/EX10.1/Ex10_1.sce10
-rw-r--r--3776/CH10/EX10.10/Ex10_10.sce15
-rw-r--r--3776/CH10/EX10.11/Ex10_11.sce18
-rw-r--r--3776/CH10/EX10.13/Ex10_13.sce20
-rw-r--r--3776/CH10/EX10.15/Ex10_15.sce17
-rw-r--r--3776/CH10/EX10.16/Ex10_16.sce18
6 files changed, 98 insertions, 0 deletions
diff --git a/3776/CH10/EX10.1/Ex10_1.sce b/3776/CH10/EX10.1/Ex10_1.sce
new file mode 100644
index 000000000..dfc409a95
--- /dev/null
+++ b/3776/CH10/EX10.1/Ex10_1.sce
@@ -0,0 +1,10 @@
+clear
+//Given
+dia = 400 //mm - The diameter of a pulley
+E = 2001 //Gpa - Youngs modulus
+t = 0.6 //mm - The thickness of band
+c = t/2 //mm - The maximum stress is seen
+//Caliculations
+
+stress_max = E*c*(10**3)/(dia/2) //MPa - The maximum stress on the crossection occurs at the ends
+printf("\n The maximum bending stress developed in the saw %0.3f MPa",stress_max)
diff --git a/3776/CH10/EX10.10/Ex10_10.sce b/3776/CH10/EX10.10/Ex10_10.sce
new file mode 100644
index 000000000..b9e6eac7c
--- /dev/null
+++ b/3776/CH10/EX10.10/Ex10_10.sce
@@ -0,0 +1,15 @@
+clear
+k = 24.0*(10**12) //N.mm2 Flexure rigidity
+E = 200.0 //Gpa - Youngs modulus of the string
+l = 5000.0 //mm - The length of the string
+C_A = 300.0 //mm2 - crossection area
+P = 50.0 //KN - The force applies at the end
+a = 2000.0 //mm - The distance C-F
+x = 1//X - let it be a variable X
+y_d = x*(a**3)/(3*k) //Xmm The displacement at D, lets keep the variable in units part
+y_p = -P*(10**3)*(16*(a**3)-12*(a**3)+(a**3))/(k*6) //mm The displacement due to p
+e_rod = l/(C_A*E*(10**3)) //Xmm -deflection, The varible is in units
+e_rod
+X = y_p/(2*e_rod+y_d) // By equating deflections
+y_d_1 = X*(a**3)/(3*k) // the deflection of point D
+printf("\n The deflection of point D %0.2f mm",y_d_1)
diff --git a/3776/CH10/EX10.11/Ex10_11.sce b/3776/CH10/EX10.11/Ex10_11.sce
new file mode 100644
index 000000000..a514a0eb8
--- /dev/null
+++ b/3776/CH10/EX10.11/Ex10_11.sce
@@ -0,0 +1,18 @@
+clear
+//
+l = 15 //in - The length of the crossection
+b = 33.9 //in - the width of the crossection
+L = 100 //in The length of the cantilever
+E = 29*(10**6) //psi The youngs modulus of the material used
+I_Z = 315 //in^4 - the moment of inertia wrt Z axis
+I_y = 8.13 //in^4 - the moment of inertia wrt Y axis
+o = 5 // degrees - the angle of acting force
+P = 2000 //k the acting force
+P_h = P*sin((%pi/180)*(o)) //k - The horizantal component of P
+P_v = P*cos((%pi/180)*(o)) //k - The vertical component of P
+e_h = P_h*(L**3)/(3*E*I_y) // the horizantal component of deflection
+e_v = P_v*(L**3)/(3*E*I_Z ) // the vertical component of deflection
+e = ((e_h**2 + e_v**2)**0.5)
+printf("\n the horizantal component of deflection %0.3f in",e_h)
+printf("\n the vertical component of deflection %0.3f in",e_v)
+printf("\n the resultant deflection %0.3f in",e)
diff --git a/3776/CH10/EX10.13/Ex10_13.sce b/3776/CH10/EX10.13/Ex10_13.sce
new file mode 100644
index 000000000..e2688eb46
--- /dev/null
+++ b/3776/CH10/EX10.13/Ex10_13.sce
@@ -0,0 +1,20 @@
+clear
+//Given
+l = 50.0 //mm - The length of the crossection
+b = 50.0 //mm - the width of the crossection
+m = 15.3 // mass of the falling body
+h = 75.0 //mm - The height of the falling body
+p = m*9.81 //N the force acted due to the body
+L = 1000.0 //mm The length of the cantilever
+E = 200 //Gpa The youngs modulus of the material used
+I = (l**4)/12 //mm - the moment of inertia
+k = 300 //N/mm -the stiffness of the spring
+//Rigid supports
+e = m*9.81*(L**3)*(10**-3)/(48*E*I) //mm - the deflection of beam
+imp_fact_a = 1 +((1 +2*h/e)**0.5) //no units ** impact factor
+//spring supports
+e_spr = h/k //mm the elongation due to spring
+e_total = e_spr + e
+imp_fact_b = 1 +((1 +2*h/e_total)**0.5) //no units ** impact factor
+printf("\n a) The maximum deflection when the beam is on rigid supports %0.3f mm with impact factor %0.2f ",e,imp_fact_a)
+printf("\n b) The maximum deflection when the beam is on spring supports %0.2f mm with impact factor %0.2f ",e_total,imp_fact_b)
diff --git a/3776/CH10/EX10.15/Ex10_15.sce b/3776/CH10/EX10.15/Ex10_15.sce
new file mode 100644
index 000000000..72f3ed920
--- /dev/null
+++ b/3776/CH10/EX10.15/Ex10_15.sce
@@ -0,0 +1,17 @@
+clear
+//Given
+E = 30*(10**3) //ksi - The youngs modulus of the material
+stress_y = 40 //ksi - yield stress
+stress_max = 24.2 //ksi - the maximum stress
+l = 2 //in - The length of the crossection
+b = 3 //in - the width of the crossection
+h = 3 //in - the depth of the crossection
+//lets check ultimate capacity for a 2 in deep section
+M_ul = stress_y*b*(l**2)/4 //K-in the ultimate capacity
+curvature = 2*stress_y/(E*(h/2) ) //in*-1 the curvature of the beam
+curvature_max = stress_max/(E*(h/2)) //in*-1 The maximum curvature
+printf("\n the ultimate capacity %0.3f k-in",M_ul)
+printf("\n the ultimate curvature %0.3f in *-1",curvature_max)
+printf("\n E given in equation is wrong")
+printf("\n Actual E in question is 30*10**3")
+
diff --git a/3776/CH10/EX10.16/Ex10_16.sce b/3776/CH10/EX10.16/Ex10_16.sce
new file mode 100644
index 000000000..7cce6d1d2
--- /dev/null
+++ b/3776/CH10/EX10.16/Ex10_16.sce
@@ -0,0 +1,18 @@
+clear
+//Given
+l_ad = 1600 //mm - The total length of the beam
+l_ab = 600 //mm - The length of AB
+l_bc = 600 //mm - The length of BC
+e_1 = 0.24 //mm - deflection
+e_2 = 0.48 //mm - deflection
+E = 35 //Gpa
+//Caliculation
+
+A_afe = -(l_ab+l_bc)*e_1*(10**-3)/(2*E)
+A_afe = -(l_ab)*e_2*(10**-3)/(4*E)
+y_1_b = A_afe + A_afe //rad the slope at the tip B
+x_1 = 1200 //com from B
+x_2 = 800 //com from B
+y_b = A_afe*x_1 + A_afe*x_2 //mm The maximum deflection at tip B
+printf("\n The maximum deflection at tip B %0.2f mm",y_b)
+printf("\n The slope at the tip B %0.2f radians",y_1_b)