summaryrefslogtreecommitdiff
path: root/3774/CH5
diff options
context:
space:
mode:
Diffstat (limited to '3774/CH5')
-rw-r--r--3774/CH5/EX5.1/Ex5_1.sce92
-rw-r--r--3774/CH5/EX5.2/Ex5_2.sce48
-rw-r--r--3774/CH5/EX5.3/Ex5_3.sce25
-rw-r--r--3774/CH5/EX5.4/Ex5_4.sce67
-rw-r--r--3774/CH5/EX5.6/Ex5_6.sce33
-rw-r--r--3774/CH5/EX5.7/Ex5_7.sce35
-rw-r--r--3774/CH5/EX5.8/Ex5_8.sce21
7 files changed, 321 insertions, 0 deletions
diff --git a/3774/CH5/EX5.1/Ex5_1.sce b/3774/CH5/EX5.1/Ex5_1.sce
new file mode 100644
index 000000000..c6132697b
--- /dev/null
+++ b/3774/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,92 @@
+// exa 5.1 Pg 142
+clc;clear;close;
+
+// Given Data
+ps=2.5;// MPa
+D=1.5;//m
+sigma_t=80;// MPa
+tau=60;// MPa
+sigma_c=120;// MPa
+n=5;// no. of rivets
+
+printf('DESIGNING LONGITUDINAL JOINT - \n')
+printf('\n Plate Thickness')
+eta_l=80;// % (efficiency)
+t = ps*D*1000/2/sigma_t/(eta_l/100)+1;// mm
+printf(', t = %.2f mm',t)
+t=32;//mm (adopted for design)
+printf('\n use t = %d mm',t)
+printf('\n Diameter of rivet hole, do = ')
+d0=6*sqrt(t);//mm (for t>8 mm)
+printf('%.2f mm',d0)
+d0=34.5;// suggested for design
+printf('\n Use do = %.f mm',d0)
+printf('\n Diameter of rivet, d = ')
+d=d0-1.5;//mm
+printf('%.2f mm',d)
+printf('\n Pitch of rivets, p = ')
+Ps=(4*1.875+1)*%pi/4*d0**2*tau;// N
+// Putting Pt=Ps where Pt=(p-d0)*t*sigma_t;// N
+Pt=Ps;//N
+p=Pt/(t*sigma_t)+d0;// N
+printf('%.1f mm',p)
+C=6;// for 5 no. of rivets
+pmax=C*t+40;// mm (as per IBR)
+printf('\n as per IBR-\n pitch, pmax = %.f mm',pmax)
+p=220;// mm (adopted for design)
+printf('\n Use p = %.f mm',p)
+pi=p/2;// mm
+printf('\n pitch of rivets in inner row, pi = %.f mm',pi)
+
+//Distance between rows of rivets
+dis1=0.2*p+1.115*d0;// mm
+printf('\n distance between outer and adjacent row = %.1f mm',dis1)
+dis1=85;//mm (adopted for design)
+printf('\n take & use this distance = %.f mm', dis1)
+dis2=0.165*p+0.67*d0;// mm
+printf('\n distance between inner row for zig-zag riveting = %.1f mm', dis2)
+dis2=60;//mm (adopted for design)
+printf('\n take & use this distance = %.f mm', dis2)
+printf('\n Thickness of wide butt strap, t= ')
+t1=0.75*t;// mm (wide butt strap)
+printf(' %.f mm',t1)
+t2=0.625*t;// mm (narrow butt strap)
+printf('\n Thickness of narrow butt strap, t= %.f mm',t2)
+//margin
+m=ceil(1.5*d0);// mm
+printf('\n margin, m = %.f mm',m)
+// Efficiency of joint
+Pt=(p-d0)*t*sigma_t;// N
+Ps=Ps;// N (shearing resistance of rivets)
+Pc=n*d0*t*sigma_c;// N (crushing resistance of rivets)
+sigma_com = (p-2*d0)*t*sigma_t+%pi/4*d0**2*tau;// N
+printf('\n strength of the joint = %d N',sigma_com)
+P=p*t*sigma_t;//N (strength of solid plate)
+printf('\n strength of solid plate = %d N',P)
+eta_l=sigma_com/P*100;// % (efficiency)
+printf('\n Efficiency of joint, eta_l = %.1f %%',eta_l)
+
+printf('\n\n DESIGNING CIRCUMFERENTIAL JOINT- \n')
+t=32;// mm
+d0=34.5;//mm
+d=33;//mm
+printf('\n Plate Thickness')
+printf(', t = %.2f mm',t)
+printf('\n Diameter of rivet hole, do = ')
+printf('%.2f mm',d0)
+printf('\n Diameter of rivet, d = ')
+printf('%.2f mm',d)
+n=(D*1000/d0)**2*(ps/tau);// no. of rivets
+printf('\n no. of rivets = %.1f',n)
+n=80;// adopted for design
+printf('\n take n = %d',n)
+// Pitch of rivets
+n1=n/2;// no. of rivets per row
+pc=%pi*(D*1000+t)/n1;// mm (pitch of rivets)
+printf('\n pitch of rivets, pc = %.2f mm\n use pc = %.f mm',pc,pc)
+eta_c=(pc-d0)/pc*100;// % (efficiency of joint)
+printf('\n Efficiency of joint, eta_c = %.2f %%',eta_c)
+dis=0.33*pc+0.67*d0;// mm (distance between rows of rivets)
+printf('\n for zig-zag riveting, distance between rows of rivets = %.1f mm. use 65 mm', dis)
+m=1.5*d0;// mm (Margin)
+printf('\n margin, m = %.f mm',m)
diff --git a/3774/CH5/EX5.2/Ex5_2.sce b/3774/CH5/EX5.2/Ex5_2.sce
new file mode 100644
index 000000000..98e59d846
--- /dev/null
+++ b/3774/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,48 @@
+// exa 5.2 Pg 147
+clc;clear;close;
+
+// Given Data
+w=400;//mm
+t=20;//mm
+sigma_t=90;// MPa
+tau=60;// MPa
+sigma_c=140;// MPa
+
+printf('\n Diameter of rivet, do = ')
+d0=6*sqrt(t);//mm (for t>8 mm)
+printf('%.2f mm',d0)
+d0=29;//mm (standard)
+printf('\n Standard diameter of rivet hole, do = %.f mm & corresponding diameter of rivet = 27 mm',d0)
+Pt=(w-d0)*t*sigma_t;//N max. tearing strength of plate
+Ps=1.75*%pi/4*d0**2*tau;// N (shearing strength of one rivet)
+n1=Pt/Ps;// no. of rivets
+n=ceil(n1);
+printf('\n no. of rivets, n = %.3f. Use n = %.f ',n1,n)
+t1=0.75*t;// mm
+t2=t1;// mm
+printf('\n thickness of inner butt strap, t1 = %.f mm', t1)
+printf('\n thickness of outer butt strap, t2 = %.f mm', t2)
+// section 1-1
+P1=(w-d0)*t*sigma_t;//N
+// section 2-2
+P2=(w-2*d0)*t*sigma_t+1.75*%pi/4*d0**2*tau;//N
+// section 3-3
+P3=(w-3*d0)*t*sigma_t+1.75*3*%pi/4*d0**2*tau;//N
+// section 4-4
+P4=(w-4*d0)*t*sigma_t+1.75*6*%pi/4*d0**2*tau;//N
+Ps=10*Ps;// N (shearing stress of all rivets)
+Pc=10*d0*t*sigma_c;// N (shearing stress of all rivets)
+Pj=P1;// N (strength f joint)
+P = w*t*sigma_t;// N (strength of solid plate)
+eta=P1/P*100; // % (efficiency of joint)
+printf('\n efficiency of joint = %.2f %%', eta)
+p1=3*d0+5;// mm (pitch of rivets)
+p=100;//mm (adopt for design)
+printf('\n pitch of rivets = %.f mm. Use %.f mm',p1,p)
+m1=1.5*d0;// mm (margin)
+m=50;//mm
+w=3*p+2*m;// mm
+printf('\n margin,\n m = %.1f mm. Use %.f mm', m1,m)
+printf('\n w = %.f mm',w)
+dis=2.5*d0;// mm
+printf('\n distance between rows = %.1f mm. Use 75 mm',dis)
diff --git a/3774/CH5/EX5.3/Ex5_3.sce b/3774/CH5/EX5.3/Ex5_3.sce
new file mode 100644
index 000000000..f93343890
--- /dev/null
+++ b/3774/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,25 @@
+// exa 5.3 Pg 150
+clc;clear;close;
+
+// Given Data
+n=6;// no. of rivets
+P=54;// kN
+e=200;//mm
+a=50;//mm (from fig.5.13(a))
+b=100;//mm (from fig.5.13(a))
+tau=120;// MPa
+
+Pd=P/n*1000;// N (direct shear load in rivet)
+C=P*e;// kN.mm (Couple)
+//l1=l3=l4=l6
+l1=sqrt(a**2+b**2);// mm
+l3=l1;l4=l1;l6=l1//mm
+l2=a;l5=a;//mm
+// F1/l1*(4*l1**2+2*l2**2)=C
+F1=C*1000/(4*l1**2+2*l2**2)*l1;// N
+theta1=acos(a/l1);// radian
+R1=sqrt(Pd**2+F1**2+2*Pd*F1*cos(theta1));// N (resultant force in rivet 1)
+//R1=%pi/4*d0**2*tau
+d0=sqrt(R1/(%pi/4*tau));// mm
+printf('\n diameter of rivets = %.2f mm. Use d0 = 17.5 mm & d=16 mm for design.',d0)
+
diff --git a/3774/CH5/EX5.4/Ex5_4.sce b/3774/CH5/EX5.4/Ex5_4.sce
new file mode 100644
index 000000000..194be35a3
--- /dev/null
+++ b/3774/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,67 @@
+// exa 5.4 Pg 151
+clc;clear;close;
+
+// Given Data
+D=0.75;//m
+ps=1.55;// N/mm.sq
+eta_l=0.75;// efficiency
+sigma_t=90;// MPa
+sigma_c=140;// MPa
+tau=56;// MPa
+n=2;// no. of rivets
+
+printf('DESIGNING LONGITUDINAL JOINT - \n')
+printf('\n Plate Thickness')
+t = ps*D*1000/2/sigma_t/eta_l+1;// mm
+printf(', t = %.2f mm',t)
+t=ceil(t);//mm (adopted for design)
+printf('\n use t = %d mm',t)
+
+printf('\n Diameter of rivet hole, do = ')
+d0=6*sqrt(t);//mm (for t>8 mm)
+printf('%.2f mm',d0)
+d0=19.5;// suggested for design
+printf('\n Use do = %.1f mm',d0)
+printf('\n Diameter of rivet, d = ')
+d=d0-1.5;//mm
+printf('%.2f mm',d)
+
+printf('\n Pitch of rivets, p = ')
+Ps=(2*1.875)*%pi/4*d0**2*tau;// N
+// Putting Pt=Ps where Pt=(p-d0)*t*sigma_t;// N
+Pt=Ps;//N
+p=Pt/(t*sigma_t)+d0;// N
+printf('%.2f mm',p)
+C=3.5;// for 2 no. of rivets
+pmax=C*t+40;// mm (as per IBR)
+printf('\n as per IBR-\n pitch, pmax = %.f mm',pmax)
+p=75;// mm (adopted for design)
+printf('\n Use p = %.f mm',p)
+
+//Distance between rows of rivets
+dis=0.33*p+0.67*d0;// mm
+printf('\n distance between rows of rivets = %.1f mm',dis)
+dis=40;//mm (adopted for design)
+printf('\n take & use this distance = %.f mm', dis)
+
+printf('\n Thickness of butt strap, t= ')
+t1=0.625*t;// mm
+printf(' %.2f mm',t1)
+t1=7;// mm (adopted for design)
+printf('\n Use thickness = %.f mm',t1)
+
+//margin
+m=ceil(1.5*d0);// mm
+printf('\n margin, m = %.f mm',m)
+
+// Efficiency of joint
+Pt=(p-d0)*t*sigma_t;// N
+Ps=Ps;// N (shearing resistance of rivets)
+Pc=n*d0*t*sigma_c;// N (crushing resistance of rivets)
+sigma_com = (p-2*d0)*t*sigma_t+%pi/4*d0**2*tau;// N
+printf('\n strength of the joint = %d N',Pt)
+P=p*t*sigma_t;//N (strength of solid plate)
+printf('\n strength of solid plate = %d N',P)
+eta_l=Pt/P*100;// % (efficiency)
+printf('\n Efficiency of joint, eta_l = %.2f %% = 75 %% as given',eta_l)
+
diff --git a/3774/CH5/EX5.6/Ex5_6.sce b/3774/CH5/EX5.6/Ex5_6.sce
new file mode 100644
index 000000000..b98707b70
--- /dev/null
+++ b/3774/CH5/EX5.6/Ex5_6.sce
@@ -0,0 +1,33 @@
+// exa 5.6 Pg 153
+clc;clear;close;
+
+// Given Data
+n=5;// no. of rivets
+P=45;// kN
+alfa=30;// degree
+tau=120;// MPa
+
+
+Pd=P/n*1000;// N (direct shear load in rivet)
+// C.G. of rivet group
+// values below are collected direct from figure
+x_bar=(3*200)/5;// mm
+y_bar=(1*50+1*150+1*100+1*200)/5;// mm
+ex=300+x_bar+y_bar;//mm
+ey=100;//mm
+l1=sqrt(x_bar**2+(y_bar/2)**2);// mm
+l2=l1;//mm
+l3=sqrt(100**2+80**2);// mm
+l4=80;//mm
+l5=l3;//mm
+
+//2*F1*l1+2*F3*l3+F4*l4=P*cos(alfa)*ex+P*sin(alfa)*ey
+F1=(P*1000*cosd(alfa)*ex+P*1000*sind(alfa)*ey)/(2*l1**2+2*l3**2+l4**2)*l1;//N
+// rivet 1 is nearest
+Beta = atand(x_bar/(y_bar/2));// degree
+theta1=Beta-(90-alfa);// degree
+R1=sqrt(Pd**2+F1**2+2*Pd*F1*cosd(theta1));// N (resultant force in rivet 1)
+//R1=%pi/4*d0**2*tau
+d0=sqrt(R1/(%pi/4*tau));// mm
+printf('\n diameter of rivets = %.2f mm. Use d0 = 21.5 mm & d=20 mm for design.',d0)
+// Note - Ans in the textbook is wrong.
diff --git a/3774/CH5/EX5.7/Ex5_7.sce b/3774/CH5/EX5.7/Ex5_7.sce
new file mode 100644
index 000000000..fd53849db
--- /dev/null
+++ b/3774/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,35 @@
+// exa 5.7 Pg 155
+clc;clear;close;
+
+// Given Data
+t=6;//mm
+sigma_t=220;// MPa
+tau=100;// MPa
+sigma_c=150;// MPa
+n=2;// no. of rivets / pitch length
+//Ps=n*%pi/4**d0**2*tau;// shearing strength of rivets
+//Pc=2*d0*t*sigma_c;// Crushing strength of rivets
+d0=2*t*sigma_c/(n*%pi/4*tau);// mm (equating Ps=Pc)
+printf('Diameter of rivets, d0 = %.2f mm. Take d0=13.5 mm & d=12 mm',d0)
+d0=13.5;//mm
+d=12;//mm
+//Pt=(p-d0)*t*sigma_t;// tearing strength
+// equating Pt=Ps
+//p= n*%pi/4**d0**2*tau/(t*sigma_t)+d0;//mm
+p= n*%pi/4*d0**2*tau/(t*sigma_t)+d0
+printf('\n Distance between rows of rivet = %.1f mm = %.f mm',p,p)
+p=floor(p);//mm
+pb=0.6*p;//mm (back pitch)
+printf('\n back pitch = %.f mm',pb)
+Pt=(p-d0)*t*sigma_t;// N (tearing strength)
+printf('\n tearing strength = %.f N',Pt)
+Ps=n*%pi/4*d0**2*tau;// N ( shearing strength)
+printf('\n shearing strength = %.f N',Ps)
+Pc=2*d0*t*sigma_c;//N (Crushing strength of rivets)
+printf('\n crushing strength = %.f N',Pc)
+joint_strength = Pc;// N
+printf('\n joint strength = %.f N',joint_strength)
+P=p*t*sigma_t;//N (strength of solid plate)
+printf('\n strength of solid plate = %.f N',P)
+eta = joint_strength/P*100;// % (efficiency)
+printf('\n efficiency of joint = %.1f %%', eta)
diff --git a/3774/CH5/EX5.8/Ex5_8.sce b/3774/CH5/EX5.8/Ex5_8.sce
new file mode 100644
index 000000000..f0e5d4ded
--- /dev/null
+++ b/3774/CH5/EX5.8/Ex5_8.sce
@@ -0,0 +1,21 @@
+// exa 5.8 Pg 156
+clc;clear;close;
+
+// Given Data
+P=20;// kN
+e=80;//mm
+tau=150;// MPa
+
+
+Pd=P/4;// kN
+C=P*e;// kN.mm (Couple)
+// As C.G. lies at 45mm from top rivet
+l1=45;l4=45;//mm
+l2=15;l3=15;//mm
+//(F1/l1)*(2*l1*l4+2*l2*l3) = C
+F1= C*1000/(2*l1*l4+2*l2*l3)*l1;//N
+R1=sqrt(Pd**2+F1**2);// N
+//R1=%pi/4*d0**2*tau
+d0=sqrt(R1/(%pi/4*tau));//mm
+printf('Diameter of rivets - \n d0 = %.3f mm',d0)
+printf('\n Use d0 = 13.5 mm & d = 12 mm')