diff options
Diffstat (limited to '3774/CH5')
-rw-r--r-- | 3774/CH5/EX5.1/Ex5_1.sce | 92 | ||||
-rw-r--r-- | 3774/CH5/EX5.2/Ex5_2.sce | 48 | ||||
-rw-r--r-- | 3774/CH5/EX5.3/Ex5_3.sce | 25 | ||||
-rw-r--r-- | 3774/CH5/EX5.4/Ex5_4.sce | 67 | ||||
-rw-r--r-- | 3774/CH5/EX5.6/Ex5_6.sce | 33 | ||||
-rw-r--r-- | 3774/CH5/EX5.7/Ex5_7.sce | 35 | ||||
-rw-r--r-- | 3774/CH5/EX5.8/Ex5_8.sce | 21 |
7 files changed, 321 insertions, 0 deletions
diff --git a/3774/CH5/EX5.1/Ex5_1.sce b/3774/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..c6132697b --- /dev/null +++ b/3774/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,92 @@ +// exa 5.1 Pg 142 +clc;clear;close; + +// Given Data +ps=2.5;// MPa +D=1.5;//m +sigma_t=80;// MPa +tau=60;// MPa +sigma_c=120;// MPa +n=5;// no. of rivets + +printf('DESIGNING LONGITUDINAL JOINT - \n') +printf('\n Plate Thickness') +eta_l=80;// % (efficiency) +t = ps*D*1000/2/sigma_t/(eta_l/100)+1;// mm +printf(', t = %.2f mm',t) +t=32;//mm (adopted for design) +printf('\n use t = %d mm',t) +printf('\n Diameter of rivet hole, do = ') +d0=6*sqrt(t);//mm (for t>8 mm) +printf('%.2f mm',d0) +d0=34.5;// suggested for design +printf('\n Use do = %.f mm',d0) +printf('\n Diameter of rivet, d = ') +d=d0-1.5;//mm +printf('%.2f mm',d) +printf('\n Pitch of rivets, p = ') +Ps=(4*1.875+1)*%pi/4*d0**2*tau;// N +// Putting Pt=Ps where Pt=(p-d0)*t*sigma_t;// N +Pt=Ps;//N +p=Pt/(t*sigma_t)+d0;// N +printf('%.1f mm',p) +C=6;// for 5 no. of rivets +pmax=C*t+40;// mm (as per IBR) +printf('\n as per IBR-\n pitch, pmax = %.f mm',pmax) +p=220;// mm (adopted for design) +printf('\n Use p = %.f mm',p) +pi=p/2;// mm +printf('\n pitch of rivets in inner row, pi = %.f mm',pi) + +//Distance between rows of rivets +dis1=0.2*p+1.115*d0;// mm +printf('\n distance between outer and adjacent row = %.1f mm',dis1) +dis1=85;//mm (adopted for design) +printf('\n take & use this distance = %.f mm', dis1) +dis2=0.165*p+0.67*d0;// mm +printf('\n distance between inner row for zig-zag riveting = %.1f mm', dis2) +dis2=60;//mm (adopted for design) +printf('\n take & use this distance = %.f mm', dis2) +printf('\n Thickness of wide butt strap, t= ') +t1=0.75*t;// mm (wide butt strap) +printf(' %.f mm',t1) +t2=0.625*t;// mm (narrow butt strap) +printf('\n Thickness of narrow butt strap, t= %.f mm',t2) +//margin +m=ceil(1.5*d0);// mm +printf('\n margin, m = %.f mm',m) +// Efficiency of joint +Pt=(p-d0)*t*sigma_t;// N +Ps=Ps;// N (shearing resistance of rivets) +Pc=n*d0*t*sigma_c;// N (crushing resistance of rivets) +sigma_com = (p-2*d0)*t*sigma_t+%pi/4*d0**2*tau;// N +printf('\n strength of the joint = %d N',sigma_com) +P=p*t*sigma_t;//N (strength of solid plate) +printf('\n strength of solid plate = %d N',P) +eta_l=sigma_com/P*100;// % (efficiency) +printf('\n Efficiency of joint, eta_l = %.1f %%',eta_l) + +printf('\n\n DESIGNING CIRCUMFERENTIAL JOINT- \n') +t=32;// mm +d0=34.5;//mm +d=33;//mm +printf('\n Plate Thickness') +printf(', t = %.2f mm',t) +printf('\n Diameter of rivet hole, do = ') +printf('%.2f mm',d0) +printf('\n Diameter of rivet, d = ') +printf('%.2f mm',d) +n=(D*1000/d0)**2*(ps/tau);// no. of rivets +printf('\n no. of rivets = %.1f',n) +n=80;// adopted for design +printf('\n take n = %d',n) +// Pitch of rivets +n1=n/2;// no. of rivets per row +pc=%pi*(D*1000+t)/n1;// mm (pitch of rivets) +printf('\n pitch of rivets, pc = %.2f mm\n use pc = %.f mm',pc,pc) +eta_c=(pc-d0)/pc*100;// % (efficiency of joint) +printf('\n Efficiency of joint, eta_c = %.2f %%',eta_c) +dis=0.33*pc+0.67*d0;// mm (distance between rows of rivets) +printf('\n for zig-zag riveting, distance between rows of rivets = %.1f mm. use 65 mm', dis) +m=1.5*d0;// mm (Margin) +printf('\n margin, m = %.f mm',m) diff --git a/3774/CH5/EX5.2/Ex5_2.sce b/3774/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..98e59d846 --- /dev/null +++ b/3774/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,48 @@ +// exa 5.2 Pg 147 +clc;clear;close; + +// Given Data +w=400;//mm +t=20;//mm +sigma_t=90;// MPa +tau=60;// MPa +sigma_c=140;// MPa + +printf('\n Diameter of rivet, do = ') +d0=6*sqrt(t);//mm (for t>8 mm) +printf('%.2f mm',d0) +d0=29;//mm (standard) +printf('\n Standard diameter of rivet hole, do = %.f mm & corresponding diameter of rivet = 27 mm',d0) +Pt=(w-d0)*t*sigma_t;//N max. tearing strength of plate +Ps=1.75*%pi/4*d0**2*tau;// N (shearing strength of one rivet) +n1=Pt/Ps;// no. of rivets +n=ceil(n1); +printf('\n no. of rivets, n = %.3f. Use n = %.f ',n1,n) +t1=0.75*t;// mm +t2=t1;// mm +printf('\n thickness of inner butt strap, t1 = %.f mm', t1) +printf('\n thickness of outer butt strap, t2 = %.f mm', t2) +// section 1-1 +P1=(w-d0)*t*sigma_t;//N +// section 2-2 +P2=(w-2*d0)*t*sigma_t+1.75*%pi/4*d0**2*tau;//N +// section 3-3 +P3=(w-3*d0)*t*sigma_t+1.75*3*%pi/4*d0**2*tau;//N +// section 4-4 +P4=(w-4*d0)*t*sigma_t+1.75*6*%pi/4*d0**2*tau;//N +Ps=10*Ps;// N (shearing stress of all rivets) +Pc=10*d0*t*sigma_c;// N (shearing stress of all rivets) +Pj=P1;// N (strength f joint) +P = w*t*sigma_t;// N (strength of solid plate) +eta=P1/P*100; // % (efficiency of joint) +printf('\n efficiency of joint = %.2f %%', eta) +p1=3*d0+5;// mm (pitch of rivets) +p=100;//mm (adopt for design) +printf('\n pitch of rivets = %.f mm. Use %.f mm',p1,p) +m1=1.5*d0;// mm (margin) +m=50;//mm +w=3*p+2*m;// mm +printf('\n margin,\n m = %.1f mm. Use %.f mm', m1,m) +printf('\n w = %.f mm',w) +dis=2.5*d0;// mm +printf('\n distance between rows = %.1f mm. Use 75 mm',dis) diff --git a/3774/CH5/EX5.3/Ex5_3.sce b/3774/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..f93343890 --- /dev/null +++ b/3774/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,25 @@ +// exa 5.3 Pg 150 +clc;clear;close; + +// Given Data +n=6;// no. of rivets +P=54;// kN +e=200;//mm +a=50;//mm (from fig.5.13(a)) +b=100;//mm (from fig.5.13(a)) +tau=120;// MPa + +Pd=P/n*1000;// N (direct shear load in rivet) +C=P*e;// kN.mm (Couple) +//l1=l3=l4=l6 +l1=sqrt(a**2+b**2);// mm +l3=l1;l4=l1;l6=l1//mm +l2=a;l5=a;//mm +// F1/l1*(4*l1**2+2*l2**2)=C +F1=C*1000/(4*l1**2+2*l2**2)*l1;// N +theta1=acos(a/l1);// radian +R1=sqrt(Pd**2+F1**2+2*Pd*F1*cos(theta1));// N (resultant force in rivet 1) +//R1=%pi/4*d0**2*tau +d0=sqrt(R1/(%pi/4*tau));// mm +printf('\n diameter of rivets = %.2f mm. Use d0 = 17.5 mm & d=16 mm for design.',d0) + diff --git a/3774/CH5/EX5.4/Ex5_4.sce b/3774/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..194be35a3 --- /dev/null +++ b/3774/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,67 @@ +// exa 5.4 Pg 151 +clc;clear;close; + +// Given Data +D=0.75;//m +ps=1.55;// N/mm.sq +eta_l=0.75;// efficiency +sigma_t=90;// MPa +sigma_c=140;// MPa +tau=56;// MPa +n=2;// no. of rivets + +printf('DESIGNING LONGITUDINAL JOINT - \n') +printf('\n Plate Thickness') +t = ps*D*1000/2/sigma_t/eta_l+1;// mm +printf(', t = %.2f mm',t) +t=ceil(t);//mm (adopted for design) +printf('\n use t = %d mm',t) + +printf('\n Diameter of rivet hole, do = ') +d0=6*sqrt(t);//mm (for t>8 mm) +printf('%.2f mm',d0) +d0=19.5;// suggested for design +printf('\n Use do = %.1f mm',d0) +printf('\n Diameter of rivet, d = ') +d=d0-1.5;//mm +printf('%.2f mm',d) + +printf('\n Pitch of rivets, p = ') +Ps=(2*1.875)*%pi/4*d0**2*tau;// N +// Putting Pt=Ps where Pt=(p-d0)*t*sigma_t;// N +Pt=Ps;//N +p=Pt/(t*sigma_t)+d0;// N +printf('%.2f mm',p) +C=3.5;// for 2 no. of rivets +pmax=C*t+40;// mm (as per IBR) +printf('\n as per IBR-\n pitch, pmax = %.f mm',pmax) +p=75;// mm (adopted for design) +printf('\n Use p = %.f mm',p) + +//Distance between rows of rivets +dis=0.33*p+0.67*d0;// mm +printf('\n distance between rows of rivets = %.1f mm',dis) +dis=40;//mm (adopted for design) +printf('\n take & use this distance = %.f mm', dis) + +printf('\n Thickness of butt strap, t= ') +t1=0.625*t;// mm +printf(' %.2f mm',t1) +t1=7;// mm (adopted for design) +printf('\n Use thickness = %.f mm',t1) + +//margin +m=ceil(1.5*d0);// mm +printf('\n margin, m = %.f mm',m) + +// Efficiency of joint +Pt=(p-d0)*t*sigma_t;// N +Ps=Ps;// N (shearing resistance of rivets) +Pc=n*d0*t*sigma_c;// N (crushing resistance of rivets) +sigma_com = (p-2*d0)*t*sigma_t+%pi/4*d0**2*tau;// N +printf('\n strength of the joint = %d N',Pt) +P=p*t*sigma_t;//N (strength of solid plate) +printf('\n strength of solid plate = %d N',P) +eta_l=Pt/P*100;// % (efficiency) +printf('\n Efficiency of joint, eta_l = %.2f %% = 75 %% as given',eta_l) + diff --git a/3774/CH5/EX5.6/Ex5_6.sce b/3774/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..b98707b70 --- /dev/null +++ b/3774/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,33 @@ +// exa 5.6 Pg 153 +clc;clear;close; + +// Given Data +n=5;// no. of rivets +P=45;// kN +alfa=30;// degree +tau=120;// MPa + + +Pd=P/n*1000;// N (direct shear load in rivet) +// C.G. of rivet group +// values below are collected direct from figure +x_bar=(3*200)/5;// mm +y_bar=(1*50+1*150+1*100+1*200)/5;// mm +ex=300+x_bar+y_bar;//mm +ey=100;//mm +l1=sqrt(x_bar**2+(y_bar/2)**2);// mm +l2=l1;//mm +l3=sqrt(100**2+80**2);// mm +l4=80;//mm +l5=l3;//mm + +//2*F1*l1+2*F3*l3+F4*l4=P*cos(alfa)*ex+P*sin(alfa)*ey +F1=(P*1000*cosd(alfa)*ex+P*1000*sind(alfa)*ey)/(2*l1**2+2*l3**2+l4**2)*l1;//N +// rivet 1 is nearest +Beta = atand(x_bar/(y_bar/2));// degree +theta1=Beta-(90-alfa);// degree +R1=sqrt(Pd**2+F1**2+2*Pd*F1*cosd(theta1));// N (resultant force in rivet 1) +//R1=%pi/4*d0**2*tau +d0=sqrt(R1/(%pi/4*tau));// mm +printf('\n diameter of rivets = %.2f mm. Use d0 = 21.5 mm & d=20 mm for design.',d0) +// Note - Ans in the textbook is wrong. diff --git a/3774/CH5/EX5.7/Ex5_7.sce b/3774/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..fd53849db --- /dev/null +++ b/3774/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,35 @@ +// exa 5.7 Pg 155 +clc;clear;close; + +// Given Data +t=6;//mm +sigma_t=220;// MPa +tau=100;// MPa +sigma_c=150;// MPa +n=2;// no. of rivets / pitch length +//Ps=n*%pi/4**d0**2*tau;// shearing strength of rivets +//Pc=2*d0*t*sigma_c;// Crushing strength of rivets +d0=2*t*sigma_c/(n*%pi/4*tau);// mm (equating Ps=Pc) +printf('Diameter of rivets, d0 = %.2f mm. Take d0=13.5 mm & d=12 mm',d0) +d0=13.5;//mm +d=12;//mm +//Pt=(p-d0)*t*sigma_t;// tearing strength +// equating Pt=Ps +//p= n*%pi/4**d0**2*tau/(t*sigma_t)+d0;//mm +p= n*%pi/4*d0**2*tau/(t*sigma_t)+d0 +printf('\n Distance between rows of rivet = %.1f mm = %.f mm',p,p) +p=floor(p);//mm +pb=0.6*p;//mm (back pitch) +printf('\n back pitch = %.f mm',pb) +Pt=(p-d0)*t*sigma_t;// N (tearing strength) +printf('\n tearing strength = %.f N',Pt) +Ps=n*%pi/4*d0**2*tau;// N ( shearing strength) +printf('\n shearing strength = %.f N',Ps) +Pc=2*d0*t*sigma_c;//N (Crushing strength of rivets) +printf('\n crushing strength = %.f N',Pc) +joint_strength = Pc;// N +printf('\n joint strength = %.f N',joint_strength) +P=p*t*sigma_t;//N (strength of solid plate) +printf('\n strength of solid plate = %.f N',P) +eta = joint_strength/P*100;// % (efficiency) +printf('\n efficiency of joint = %.1f %%', eta) diff --git a/3774/CH5/EX5.8/Ex5_8.sce b/3774/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..f0e5d4ded --- /dev/null +++ b/3774/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,21 @@ +// exa 5.8 Pg 156 +clc;clear;close; + +// Given Data +P=20;// kN +e=80;//mm +tau=150;// MPa + + +Pd=P/4;// kN +C=P*e;// kN.mm (Couple) +// As C.G. lies at 45mm from top rivet +l1=45;l4=45;//mm +l2=15;l3=15;//mm +//(F1/l1)*(2*l1*l4+2*l2*l3) = C +F1= C*1000/(2*l1*l4+2*l2*l3)*l1;//N +R1=sqrt(Pd**2+F1**2);// N +//R1=%pi/4*d0**2*tau +d0=sqrt(R1/(%pi/4*tau));//mm +printf('Diameter of rivets - \n d0 = %.3f mm',d0) +printf('\n Use d0 = 13.5 mm & d = 12 mm') |