diff options
Diffstat (limited to '3773/CH15/EX15.8/Ex15_8.sce')
-rw-r--r-- | 3773/CH15/EX15.8/Ex15_8.sce | 60 |
1 files changed, 60 insertions, 0 deletions
diff --git a/3773/CH15/EX15.8/Ex15_8.sce b/3773/CH15/EX15.8/Ex15_8.sce new file mode 100644 index 000000000..a6e4c53cf --- /dev/null +++ b/3773/CH15/EX15.8/Ex15_8.sce @@ -0,0 +1,60 @@ +//Chapter 15: Antennas for Special Applications +//Example 15-20.1 +clc; + +//Variable Initialization +Tr = 45 //Satellite receiver temperature (K) +rcp_gain = 6 //Right circularly polarized antenna gain (dBi) +rcp_quad_gain = 3 //RCP gain of quadrifilar helix antenna (dBi) +bandwidth = 9.6e3 //Bandwidth (Hz) +snr = 10 //Required Signal-to-Noise ratio (dB) +c = 3e8 //Speed of light (m/s) +f = 1.65e9 //Frequency (Hz) +r = 780e3 //Distance to the satellite (m) +Ta = 300 //Antenna temperature (K) +k = 1.4e-23 //Boltzmann's constant (J/K) +theta = 10 //Zenith angle (degree) +Tr_handheld = 75 //Hand held receiver temperature (K) +Tsky = 6 //Sky Temperature (K) +theta_horz = 80 //Zenith angle for horizontal dipole (degree) + +//Calculations +wave_lt = c/f //Wavelength (m) +Ld = (wave_lt/(4*%pi*r))**2 //Spatial loss factor(unitless) +Ld_db = 10*log10(Ld) //Spatial loss factor(dB) +Tsys_up = Ta + Tr //Satellite system temperature (K) +N = k*Tsys_up*bandwidth //Noise power(W) +N_db = 10*log10(N) //Noise power (dB) +E_vert = cos(%pi*cos(theta*%pi/180)/2)/sin(theta*%pi/180) //Pattern factor for vertical lambda/2 dipole (unitless) +E_vert_db = 20*log10(E_vert) +Pt_vert_up = snr - (2.15 + (E_vert_db) - 3) - rcp_gain + ceil(N_db) - floor(Ld_db) //Uplink power for vertical lambda/2 antenna (dB) +Pt_vert_up = 10**(Pt_vert_up/10) //Uplink power for vertical lambda/2 antenna (W) +Ta_down = 0.5*(Ta)+0.5*(Tsky)+3 //Downlink antenna temperature (K) +Tsys_down = Ta_down + Tr_handheld //System temperature(K) +N_down = k*Tsys_down*bandwidth //Noise power (W) +N_down_db = 10*log10(N_down) //Noise power (dB) +Pt_vert_down = snr -(2.15+ (E_vert_db) - 3) - rcp_gain + ceil(N_down_db) - floor(Ld_db) //Downlink power for vertical lambda/2 antenna (dB) +Pt_vert_down = 10**(Pt_vert_down/10) //Downlink power for vertical lambda/2 antenna (W) +E_horz = cos(%pi*cos(theta_horz*%pi/180)/2)/sin(theta_horz*%pi/180) //Pattern factor for horizontal lambda/2 dipole (unitless) +E_horz_db = (20*log10(E_horz)) +Pt_horz_up = snr -(2.15 + E_horz_db - 3) - rcp_gain + round(N_db) - round(Ld_db) //Uplink power for horizonal lambda/2 dipole (dB) +Pt_horz_up = 10**(Pt_horz_up/10) //Uplink power for horizonal lambda/2 dipole (W) +Pt_horz_down = snr -(2.15 + E_horz_db - 3) - rcp_gain + round(N_down_db) - round(Ld_db) //Downlink power for horizonal lambda/2 dipole (dB) +Pt_horz_down = 10**(Pt_horz_down/10) //Downlink power for horizonal lambda/2 dipole (W) +Pt_quad_up = snr -(rcp_quad_gain + E_horz_db) - rcp_gain + round(N_db) - round(Ld_db) //Uplink power for RCP quadrifilar helix antenna (dB) +Pt_quad_up = 10**(Pt_quad_up/10) //Uplink power for RCP quadrifilar helix antenna (W) +Ta_quad = 0.85*(Tsky) + 0.15*(Ta) //Downlink antenna temperature (K) +Tsys_quad = Ta_quad + Tr_handheld //System temperature(K) +N_quad = k*Tsys_quad*bandwidth //Noise power (W) +N_quad_db = 10*log10(N_quad) //Noise power (dB) +Pt_quad_down = snr -(rcp_quad_gain + E_horz_db) - rcp_gain + round(N_quad_db) - round(Ld_db) //Downlink power for RCP quadrifilar helix antenna (dB) +Pt_quad_down = 10**(Pt_quad_down/10) //Downlink power for RCP quadrifilar helix antenna (W) + + +//Results +mprintf("The Uplink power for vertical lambda/2 dipole is %.1f W",Pt_vert_up) +mprintf("\nThe Uplink power for horizontal lambda/2 dipole is %.3f W",Pt_horz_up) +mprintf("\nThe Uplink power for RCP quadrifilar helix antenna is %.3f W",Pt_quad_up) +mprintf("\nThe Downlink power for vertical lambda/2 dipole is %.1f W",Pt_vert_down) +mprintf("\nThe Downlink power for horizontal lambda/2 dipole is %.3f W",Pt_horz_down) +mprintf("\nThe Downlink power for RCP quadrifilar helix antenna is %.3f W",Pt_quad_down) |