diff options
Diffstat (limited to '3772/CH5')
-rw-r--r-- | 3772/CH5/EX5.1/Ex5_1.sce | 23 | ||||
-rw-r--r-- | 3772/CH5/EX5.11/Ex5_11.sce | 41 | ||||
-rw-r--r-- | 3772/CH5/EX5.12/Ex5_12.sce | 42 | ||||
-rw-r--r-- | 3772/CH5/EX5.13/Ex5_13.sce | 40 | ||||
-rw-r--r-- | 3772/CH5/EX5.14/Ex5_14.sce | 39 | ||||
-rw-r--r-- | 3772/CH5/EX5.15/Ex5_15.sce | 39 | ||||
-rw-r--r-- | 3772/CH5/EX5.2/Ex5_2.sce | 36 | ||||
-rw-r--r-- | 3772/CH5/EX5.3/Ex5_3.sce | 30 | ||||
-rw-r--r-- | 3772/CH5/EX5.4/Ex5_4.sce | 28 | ||||
-rw-r--r-- | 3772/CH5/EX5.8/Ex5_8.sce | 32 | ||||
-rw-r--r-- | 3772/CH5/EX5.9/Ex5_9.sce | 27 |
11 files changed, 377 insertions, 0 deletions
diff --git a/3772/CH5/EX5.1/Ex5_1.sce b/3772/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..943575825 --- /dev/null +++ b/3772/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,23 @@ +// Problem 5.1,Page no.121 + +clc;clear; +close; + +b=100 //mm //width of timber joist +d=200 //mm //depth of joist +L=3 //m //Length of beam +sigma=7 //KN/mm**2 //bending stress +w_1=5 //KN/mm**2 //unit weight of timber + +//Calculations +w=0.1*0.2*1*5*100 //N/m //self weight of the joist +I_xx=1*12**-1*100*200**3 //mm**4 //M.I of section about N.A + +//M=W*L+w*L**2*2**-1 //Max Bending moment +//Therefore,M=(3*W+450) + +//using the relation M*I**-1=sigma*y**-1,we get +W=(((7*2*10**8)*(100*10**3*3)**-1)-450)*3**-1 //N //Max Load applied + +//Result +printf("The Max value of Load applied is %.2f N",W) diff --git a/3772/CH5/EX5.11/Ex5_11.sce b/3772/CH5/EX5.11/Ex5_11.sce new file mode 100644 index 000000000..c4eecfb1b --- /dev/null +++ b/3772/CH5/EX5.11/Ex5_11.sce @@ -0,0 +1,41 @@ +// Problem 5.11,Page no.131 + +clc;clear; +close; + +D=4 //cm //Outside diameter +d=3 //cm //inside diamter +L=2 //m //span of beam +W=1000 //N //Max safe Load + +//Calculations + +I=%pi*64**-1*(D**4-d**4) //cm**4 //M.I +A=%pi*4**-1*(D**2-d**2) //cm**2 //Area +y=2 +Z=I*y**-1 //cm**3 //Section modulus + +M=W*L*4**-1 //N*cm //Max bending moment + +//From Flexural Formula +sigma=M*Z**-1 //N/cm**2 + +//For Tubes +//M.I about x-x axis +I_1=4*(8.59+5.492*2**2) //cm**4 + +Z_1=122.32*4**-1 //cm**3 + +//M=W_1*200*4**-1 //N*cm +//After substituting values we get +//M=50*W_1 (equation 1) + +//Again from Flexural Formula +M=sigma*Z_1 + +//substitute value of M in equation 1 + +W=11640*30.58*50**-1 //N + +//Result +printf("Max central load is %.2f N",W) diff --git a/3772/CH5/EX5.12/Ex5_12.sce b/3772/CH5/EX5.12/Ex5_12.sce new file mode 100644 index 000000000..8267df0ea --- /dev/null +++ b/3772/CH5/EX5.12/Ex5_12.sce @@ -0,0 +1,42 @@ +// Problem 5.12,Page no.133 + +clc;clear; +close; + +b=200 //mm //width of beam +d=300 //mm //depth of beam +t=12 //mm //thickness of beam +E_s=220 //KN/m**2 //modulus of elasticity of steel +E_w=11 //KN/m**2 //modulus of elasticity of timber +sigma_s=115 //MN/m**2 //stress of steel +sigma_w=9.2 //MN/m**2 //stress of timber +L=2 //m //Span of beam + +//Calculations + +//E_w*E_s**-1=1*20**-1 //ratio of Modulus of elasticity of timber to steel + + +//(Part-1) +b_1=b*20**-1 //mm //web thickness of transformed section +stress=20*sigma_w //MN/m**2 //Allowable stress in web of equivalen beam +//But allowable stress in flanges is sigma_s is 115 KN/m**2 and therefore taken into consideration + + +d_1=324 //mm //depth of beam with thickness in consideration +I=1*12**-1*0.2*0.324**3-2*1*12**-1*0.095*0.3**3 //m**4 //M.I of transformed section + +//Using Relation, M*I**-1=sigma*y**-1 we get + +//Part-2 +M_max=I*(324*10**-3*2**-1)**-1*sigma_s*10**6 //N*m //Max allowable Bending moment for steel section + +//Part-3 +//As beam is simply supported at the ends and the load is applied at the centre of beam +//M_max=W*L*4**-1 //Max Bending moment +W=M_max*4*L**-1 //N //Allowable stress Load + +//Result +printf("Web thickness of Equivalent steel section is %.2f mm",b_1) +printf("\n Max Allowable bending moment for section is %.2f N-m",M_max) +printf("\n Allowable safe Load is %.2f N",W) diff --git a/3772/CH5/EX5.13/Ex5_13.sce b/3772/CH5/EX5.13/Ex5_13.sce new file mode 100644 index 000000000..69d2eb537 --- /dev/null +++ b/3772/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,40 @@ +// Problem 5.13,Page no.135 + +clc;clear; +close; + +d=10 //cm //distance between joists +t=2 //cm //thickness of steel plate +d_2=20 //cm //depth of beam +sigma_t=8.5 //N/mm**2 //stress in timber +E_s=2*10**5 //N/mm**2 //Modulus of elasticity of steel +E_t=10**4 //N/mm**2 ////Modulus of elasticity of timber +L=5 //cm //span of beam + +//calculation +sigma=10*15**-1*sigma_t //stress in timber at distance of 10 cm from XX (N/mm**2) + +dell=sigma*E_t**-1 //strain in timber at 10 cm from XX (N/mm**2) + +sigma_s=dell*E_s //N/mm**2 //Max stress + +//For Timber +Z_w=1*6**-1*10*30**2*2 //cm**3 //section modulus of timber +M_w=sigma_t*100*Z_w //moment of resistance of timber (N-cm) + +//For steel +Z_s=1*6**-1*2*20**2 //cm**3 //section modulus of steel +M_s=sigma_s*Z_s*100 //moment of resistance of steel (N-cm) + +M=(M_w+M_s)*10**-5 //total moment of resistance(N-cm) + +//M=w*L**2*8**-1 //N*cm //Max bending moment +w=8*M*(L**2)**-1 //kN/m //Max uniform distributed Load + +//Result kN/m +printf("Moment of resistance is %.3f N-cm",M) +printf("\n Max uniform distributed Load = %.3f kN/m",w) +// answer in the textbook is not accurate. + + + diff --git a/3772/CH5/EX5.14/Ex5_14.sce b/3772/CH5/EX5.14/Ex5_14.sce new file mode 100644 index 000000000..ac0d42a62 --- /dev/null +++ b/3772/CH5/EX5.14/Ex5_14.sce @@ -0,0 +1,39 @@ +// Problem 5.14,Page no.136 + +clc;clear; +close; + +B=10 //cm //width of timber section +D=15 //cm //depth of timber section +b=10 //cm //width of steel plate +t=12 //mm //thickness +w=3 //KN/m //Uniformly distributed Load +L=4 //m //Span of beam +m=20 //Ratio of modulus of elasticity of steel to timber +W=3 //KN/m //Load + +//Calculations + +y_1=15*2**-1 //C.G of timber +y_2=1.2*2**-1 //C.G of steel plate +b_s=10*m**-1 //cm //Equivalent width of steel +Y_bar=(10*1.2*0.6+15*0.5*8.7)*(10*1.2+15*0.5)**-1 //cm //distance of C.G from bottom edge + +I=1*12**-1*10*(1.2)**3+10*1.2*(3.72-0.6)**2+1*12**-1*0.5*(15)**3+0.5*15*(7.5-3.72)**2 +M=W*10**5*L**2*8**-1 //N*m + +Y_bar_1=3.72 //cm //C.G from bottom edge +Y_bar_2=16.2-Y_bar //cm //C.G from top edge + +sigma_1=(M*I**-1*Y_bar_1)*10**-2 //N/mm**2 //stress at bottom + +sigma_2=(M*I**-1*Y_bar_2)*10**-2 //N/mm**2 //stress at top + +sigma_max=sigma_2*m**-1 + +//The Answers in book for Moment of Inertia about x-x axis onwards are incorrect + +//Result +printf("Moment of Inertia = %.f N-m",M) +printf("\n The Max Stress in steel is %.2f N/mm^2",sigma_1) +printf("\n The Max Stress in timber is %.2f N/mm**2",sigma_max) diff --git a/3772/CH5/EX5.15/Ex5_15.sce b/3772/CH5/EX5.15/Ex5_15.sce new file mode 100644 index 000000000..6adcca091 --- /dev/null +++ b/3772/CH5/EX5.15/Ex5_15.sce @@ -0,0 +1,39 @@ +// Problem 5.15,Page no.137 + +clc;clear; +close; + +B=20 //cm //width of timber +D=30 //cm //depth of timber +d=25 //cm //depth of steel plate +b=1.2 //cm //width of steel plate +sigma_s=90 //N/mm**2 //Bending stress in steel +sigma_t=6 //N/mm**2 //Bending stress in timber +m=20 //Ratio of modulus of elasticity of of steel to timber + +//Calculation + +//Equivalent width of wood section,when 1.2 cm wide steel plate is replaced by steel plate is +b_1=1.2*20 //cm +d_1=25 //cm //depth of wood section +y_1=d*2**-1 //cm //C.G of timber section +y_2=D*2**-1 //cm //C.G of steel section + +Y_bar=(2*d*b_1*y_1+D*B*y_2)*(2*d*b_1+D*B)**-1 //cm //Distance of C.G from Bottom edge +I=B*D**3*12**-1+B*D*(y_2-Y_bar)**2+2*(b_1*d_1**3*12**-1+b_1*d_1*(Y_bar-y_1)**2) //M.I of equivalent timber section about N.A +Y=30-Y_bar //distance of C.G from top of equivalent wood section + +//Thus max stress will occur at top and that in steel will occur at bottom +//sigma_s=m*Y_bar*Y**-1*sigma_t + +//After simplifying we get +//sigma_s=15.99*sigma_t + +sigma_t=sigma_s*15.99**-1 //N/mm**2 //Max stress in Equivalent timber section + +Z_t=I*Y**-1 //Section modulus of equivalent section +M=sigma_t*Z_t*10**-5*100 //Moment of resistance of beam + +//Result +printf("Position of N.A is %.2f cm",Y_bar) +printf("\n Moment of Resistance of beam is %.2f kN-m",M) diff --git a/3772/CH5/EX5.2/Ex5_2.sce b/3772/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..bedd1f905 --- /dev/null +++ b/3772/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,36 @@ + +// Problem 5.2,Page no.122 + +clc;clear; +close; + +D=160 //mm //Overall Depth +B=150 //mm //Width of Flange +f_t=40 //mm //Flange thickness +W_t=50 //mm //Web thickness +sigma_t=20 //N/mm**2 //tension stress +sigma_c=75 //N/mm**2 //compression stress + +//Calculations + +//Rectangle-1 +a_1=150*40 //mm**2 //Area of Rectangle-1 +y_1=40*2**-1 //mm //C.G of Rectangle-1 + +//Rectangle-2 +a_2=120*50 //mm**2 //Area of Rectangle-2 +y_2=40+120*2**-1 //mm //C.G of Rectangle-2 + +Y_bar=(a_1*y_1+a_2*y_2)*(a_1+a_2)**-1 //mm //Distance of C.G from the bottom flange +I=1*12**-1*150*40**3+150*40*(60-40)**2+1*12**-1*50*120**3+50*120*(100-60)**2 //mm**4 //M.I of section about N.A +y_t=60 //mm //Permissible tensile stress at the bottom face of flange from N.A +y_c=100 //mm //Permissible tensile stress at the top face of flange from N.A + +//M=W*L*4**-1 //Max bending mooment at the centre + +//Using the relation M*I**-1=sigma_t*y_t**-1 we get +W=(0.333*4*272*10**5)*(2.5*1000)**-1 //N //MAx central load + +//Result +printf("The Max Bending Moment at the centre is %.2f N",W) +//Answer is wrong in the textbook. diff --git a/3772/CH5/EX5.3/Ex5_3.sce b/3772/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..1e8ba01c6 --- /dev/null +++ b/3772/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,30 @@ +// Problem 5.3,Page no.123 + +clc;clear; +close; + +b=10 //cm //width of beam +d=20 //cm depth of beam + +//Calculations + +//R_a and R_b are the reactions at A and B respectively. +//Moment of all forces about A + +R_b=(4*4*4*2**-1-2*1.5)*(2)**-1 //KN +//R_a+R_b=18 +R_a=18-R_b + +//Consider a section at a distance x from A +//M_x=9.25*x-2(x-1.5)-4*x*x*2**-1=7.25*x+3-2*x**2 + +//Taking derivative of above equation to find max value of M_x we get +x=1.81 //m + +M=7.25*x+3-2*x**2 //kN*m +I=b*d**3*12**-1 //cm**4 //M.I of the section +y=10 +sigma=M*I**-1*y*10**8*(10**2)**-1 //Max bending stress + +//Result +printf("The Max Bending stress is %.2f kN/m^2",sigma) diff --git a/3772/CH5/EX5.4/Ex5_4.sce b/3772/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..8269d81ca --- /dev/null +++ b/3772/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,28 @@ +// Problem 5.4,Page no.124 + +clc;clear; +close; + +b=10 //cm //width of beam +d=20 //cm depth of beam + +sigma=8 //N/mm**2 //Max bending stress +W=5000 //N/m**2 //Load of floor +A=450 //cm**2 //Area of joist +L=5 //m //span of floor + +//Calculations +//Let x be the centre to centre spacingof the joists + +//A_1=5*x**2 //m**2 //Area of floor between any two joists +//W_1=5*x*W //N //total load supported by one interior joist +//M=W_1*L*8**-1 //Max bending moment +I=1*12**-1*b*(d*10**-2)**3*10**-2 //m**4 //M.I of joist +y=0.15 //cm //Distance of of farthest fibre +M=I*y**-1*sigma //N*m + +//Now equating to max bending moment we get +x=(18000*8)*(25000*5)**-1 + +//Result +printf("The Max Bending Moment is %.2f m",x) diff --git a/3772/CH5/EX5.8/Ex5_8.sce b/3772/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..189a866ea --- /dev/null +++ b/3772/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,32 @@ +// Problem 5.8,Page no.127 + +clc;clear; +close; + +L=3 //m //span of beam +t=20 //mm //Thickness of steel +D=200 //mm //overall depth +B=140 //mm //overall width +b=100 //mm //width of inner rectangle +d=160 //mm //depth of inner rectangle +w=77 //KN/mm**2 +sigma=100 //N/mm**2 //Bending stress +//Calculations +V=((D*10**-3*B*10**-3)-(d*10**-3*b*10**-3)) //m**3 //Volume of rectangular box +W=V*3*w //KN //Weight of Beam +I=(B*D**3-b*d**3)*12**-1 //mm**4 //M.I of beam section + +//Now using the relation,M*I**-1=sigma*y**-1 + +y=200 //mm //distance from farthest fibre +M=I*sigma*2*y**-1 //N*mm + +//M=3000*W+2772*3000*2**-1 +//After sub values in above equation we get + +W=((59.2*10**6-2772*3000*2**-1)*(3000)**-1)*10**-3 //KN //Max concentrated Load at free end + +F=W+2.772*2**-1 //KN //shear force at half length + +//Result +printf("The shear force at half length is %.2f kN",F) diff --git a/3772/CH5/EX5.9/Ex5_9.sce b/3772/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..390dc25fc --- /dev/null +++ b/3772/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,27 @@ +// Problem 5.9,Page no.128 + +clc;clear; +close; + +B=24 //mm //width of beam section +D=21.7 //mm //depth of beam section +E_1=11440 //MN/m**2 //Modulus of Elasticity parallel grain +E_2=2860 //MN/m**2 ////Modulus of Elasticity perpendicular grain +sigma_1=8.57 //MN/m**2 +sigma_2=2.14 //MN/m**2 +L=1.2 //m //span of beam + +//Calculations + +//Ratio of smaller modulus to larger modulus is E_2:E_1=1:4 +//Dimension of transformed Beam section +b=18 //mm //width of Beam section +d=3.1 //mm //depth of beam section + +I=(1*12**-1*B*10**-3*(D*10**-3)**3)-(3*(1*12**-1*b*10**-3*(d*10**-3)**3)) //m**4 //M.I of transformed section +y=21.7*10**-3*2**-1 +M=I*sigma_1*10**6*y**-1 //N*m //Safe B.M +P=4*M*L**-1 //N + +//Result +printf("Safe value of Load is %.2f N",P) |