summaryrefslogtreecommitdiff
path: root/3764/CH1
diff options
context:
space:
mode:
Diffstat (limited to '3764/CH1')
-rw-r--r--3764/CH1/EX1.1/Ex1_1.sce33
-rw-r--r--3764/CH1/EX1.2/Ex1_2.sce36
-rw-r--r--3764/CH1/EX1.3/Ex1_3.sce51
-rw-r--r--3764/CH1/EX1.4/Ex1_4.sce30
4 files changed, 150 insertions, 0 deletions
diff --git a/3764/CH1/EX1.1/Ex1_1.sce b/3764/CH1/EX1.1/Ex1_1.sce
new file mode 100644
index 000000000..144786644
--- /dev/null
+++ b/3764/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,33 @@
+clc
+//
+
+//Variable declaration
+Fac = 750 //Force on rod AC(lb)
+D = 0.375 //Diameter at the upper junction of rod ABC(in)
+
+
+//Calculation
+//Case(a)
+A=(1/4.0)*((%pi)*(D**2)) //Area at the upper junction of rod ABC(in^2)
+tA=(Fac/A) //Shearing Stress in Pin A(psi)
+//Case(b)
+Ab=(1/4.0)*((%pi)*(0.25**2)) //Area at the lower junction of rod ABC(in^2)
+tC=(((1/2.0)*Fac)/Ab) //Shearing Stress in Pin C(psi)
+//Case(c)
+Anet=(3/8.0)*(1.25-0.375) //Area of cross section at A(in^2)
+sA=(Fac/Anet) //Largest Normal Stress in Link ABC(psi)
+//Case(d)
+F1=750/2 //Force on each side(lb)
+Ad=(1.25*1.75) //Area at junction B(in^2)
+tB=(F1/Ad) //Average Shearing Stress at B
+//Case(e)
+Ae=0.25*0.25 //Area at point C(in^2)
+sB=(F1/Ae) //Bearing Stress in Link at C
+
+
+//Result
+printf("\n Case(a): Shearing Stress in Pin A = %.1f psi' ,tA)
+printf("\n Case(b): Shearing Stress in Pin C = %.f psi' ,tC)
+printf("\n Case(c): Largest Normal Stress in Link ABC = %.f psi' ,sA)
+printf("\n Case(d): Average Shearing Stress at B = %.f psi' ,tB)
+printf("\n Case(e): Bearing Stress in Link at C = %.f psi' ,sB)
diff --git a/3764/CH1/EX1.2/Ex1_2.sce b/3764/CH1/EX1.2/Ex1_2.sce
new file mode 100644
index 000000000..27f8a0d46
--- /dev/null
+++ b/3764/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,36 @@
+clc
+//
+
+//Variable declaration
+P = 120 //Maximum allowable tension force
+s = 175 //Maximum allowable stress
+t = 100 //Maximum allowable stress
+Sb = 350 //Maximum allowable stress
+
+
+//Calculation
+//Case(a)
+F1=P/2 //Current(A)
+d=sqrt(((P/2.0)*1000)/((22/(4*7.0))*(100000000))) //Diameter of bolt(m)
+d=d*1000 //Diameter of bolt(mm)
+d=(d) //Rounding of the value of diameter of bolt(mm)
+
+Ad=(0.020*0.028) //Area of cross section of plate
+tb=((P*1000)/Ad)/(1000000) //Stress between between the 20-mm-thick plate and the 28-mm-diameter bolt
+tb=(tb) //Rounding of the above calculated stress to check if it is less than 350
+
+a=(P/2)/((0.02)*(175)) //Dimension of cross section of ring
+a=(a) //Rounding dimension of cross section of ring to two decimal places
+
+b=28 + (2*(a)) //Dimension b at Each End of the Bar
+b=(b) //Rounding the dimension b to two decimal places
+
+h=(P)/((0.020)*(175)) //Dimension h of the Bar
+h=(h) //Rounding dimension h of bar to 1 decimal place
+
+
+
+//Result
+printf("\n Case(a): Diameter of the bolt = %.f mm' ,d)
+printf("\n Case(b): Dimension b at Each End of the Bar = %.f mm' ,b)
+printf("\n Case(c): Dimension h of the Bar = %f mm' ,h)
diff --git a/3764/CH1/EX1.3/Ex1_3.sce b/3764/CH1/EX1.3/Ex1_3.sce
new file mode 100644
index 000000000..07e1d44da
--- /dev/null
+++ b/3764/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,51 @@
+clc
+//
+
+//Variable declaration
+Su = 600 //ultimate normal stress(MPa)
+FS = 3.3 //Factor of safety with respect to failure
+tU=350 //Ultimate shearing stress(MPa)
+Cx=40 //X Component of reaction at C(kN)
+Cy=65 //Y Component of reaction at C(kN)
+Smax=300 //Allowable bearing stress of the steel
+
+//Calculation
+C=sqrt(((40**2))+((65**2)))
+
+//Case(a)
+P=(15*0.6 + 50*0.3)/(0.6) //Allowable bearing stress of the steel(MPa)
+Sall=(Su/FS) //Allowable Stress(MPa)
+Sall=(Sall) //Rounding Allowable stress to 1 decimal place(MPa)
+
+Areqa=(P/(Sall*(1000))) //Cross Sectional area(m^2)
+Areqa=(Areqa) //Rounding cross sectional area to 5 decimal places(m^2)
+
+dAB=sqrt(((Areqa)*(4))/(22/7)) //Diameter of AB(m)
+dAB=dAB*1000 //Diameter of AB(mm)
+dAB=(dAB) //Rounding Diameter of AB(mm)
+
+
+//Case(b)
+tALL=tU/FS //Stress(MPa)
+tALL=(tALL) //Rounding of Stress
+
+AreqC=((C/2)/tALL) //Cross sectional area(m^2)
+AreqC=AreqC*1000
+AreqC=(AreqC) //Rounding the cross sectional area
+
+dC=sqrt((4*AreqC)/(22/7)) //Diameter at point C
+dC=((dC+1)) //Rounding of the diameter at C
+
+
+//Case(c)
+
+Areq=((C/2)/Smax)
+Areq=Areq*1000 //Cross sectional area(mm^2)
+t=(Areq/22) //Thickness of the bracket
+t=(t)
+
+
+//Result
+printf("\n Case(a): Diameter of the bolt = % f mm' ,dAB)
+printf("\n Case(a): Dimension b at Each End of the Bar = % f mm' ,dC)
+printf("\n Case(a): Dimension h of the Bar = % f mm' ,t)
diff --git a/3764/CH1/EX1.4/Ex1_4.sce b/3764/CH1/EX1.4/Ex1_4.sce
new file mode 100644
index 000000000..b476c4979
--- /dev/null
+++ b/3764/CH1/EX1.4/Ex1_4.sce
@@ -0,0 +1,30 @@
+clc
+//
+
+//Variable declaration
+tU=40 //ultimate tensile stress
+sU=60 //ultimate shearing stress
+FS=3 //Mimnimum factor of safety
+dA=(7/16) //Diameter of bolt at A(in)
+dB=3/8 //Diameter of bolt at B(in)
+dD=3/8 //Diameter of bolt at D(in)
+dC=1/2 //Diameter of bolt at C(in)
+
+
+//Calculation
+Sall=(sU/FS) //Total tensile stress(kips)
+B=Sall*((1/4)*(22/7)*(((7/16)**2))) //Allowable force in the control rod(kips)
+C1=1.75*(B) //Control Rod(kips)
+tall=(tU/FS) //Total shearing stress
+B=2*(tall*(1/4)*(22/7)*(3/8)*(3/8)) //Allowable magnitude of the force B exerted on the bolt
+C2=1.75*B //Bolt at B(kips)
+D=B //Bolt at D. Since this bolt is the same as bolt B, the allowable force is same(kips)
+C3=2.33*D //Bolt at D(kips)
+C4=2*(tall*(1/4)*(22/7)*(1/2)*(1/2)) //Bolt at C(kips)
+
+
+//Result
+printf("\n Case(a): Control Rod = % f kips' ,C1)
+printf("\n Case(b): Bolt at B = % f kips' ,C2)
+printf("\n Case(c): Bolt at D = % f kips' ,C3)
+printf("\n Case(d): Bolt at C = % f kips' ,C4)