diff options
Diffstat (limited to '3764/CH1')
-rw-r--r-- | 3764/CH1/EX1.1/Ex1_1.sce | 33 | ||||
-rw-r--r-- | 3764/CH1/EX1.2/Ex1_2.sce | 36 | ||||
-rw-r--r-- | 3764/CH1/EX1.3/Ex1_3.sce | 51 | ||||
-rw-r--r-- | 3764/CH1/EX1.4/Ex1_4.sce | 30 |
4 files changed, 150 insertions, 0 deletions
diff --git a/3764/CH1/EX1.1/Ex1_1.sce b/3764/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..144786644 --- /dev/null +++ b/3764/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,33 @@ +clc +// + +//Variable declaration +Fac = 750 //Force on rod AC(lb) +D = 0.375 //Diameter at the upper junction of rod ABC(in) + + +//Calculation +//Case(a) +A=(1/4.0)*((%pi)*(D**2)) //Area at the upper junction of rod ABC(in^2) +tA=(Fac/A) //Shearing Stress in Pin A(psi) +//Case(b) +Ab=(1/4.0)*((%pi)*(0.25**2)) //Area at the lower junction of rod ABC(in^2) +tC=(((1/2.0)*Fac)/Ab) //Shearing Stress in Pin C(psi) +//Case(c) +Anet=(3/8.0)*(1.25-0.375) //Area of cross section at A(in^2) +sA=(Fac/Anet) //Largest Normal Stress in Link ABC(psi) +//Case(d) +F1=750/2 //Force on each side(lb) +Ad=(1.25*1.75) //Area at junction B(in^2) +tB=(F1/Ad) //Average Shearing Stress at B +//Case(e) +Ae=0.25*0.25 //Area at point C(in^2) +sB=(F1/Ae) //Bearing Stress in Link at C + + +//Result +printf("\n Case(a): Shearing Stress in Pin A = %.1f psi' ,tA) +printf("\n Case(b): Shearing Stress in Pin C = %.f psi' ,tC) +printf("\n Case(c): Largest Normal Stress in Link ABC = %.f psi' ,sA) +printf("\n Case(d): Average Shearing Stress at B = %.f psi' ,tB) +printf("\n Case(e): Bearing Stress in Link at C = %.f psi' ,sB) diff --git a/3764/CH1/EX1.2/Ex1_2.sce b/3764/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..27f8a0d46 --- /dev/null +++ b/3764/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,36 @@ +clc +// + +//Variable declaration +P = 120 //Maximum allowable tension force +s = 175 //Maximum allowable stress +t = 100 //Maximum allowable stress +Sb = 350 //Maximum allowable stress + + +//Calculation +//Case(a) +F1=P/2 //Current(A) +d=sqrt(((P/2.0)*1000)/((22/(4*7.0))*(100000000))) //Diameter of bolt(m) +d=d*1000 //Diameter of bolt(mm) +d=(d) //Rounding of the value of diameter of bolt(mm) + +Ad=(0.020*0.028) //Area of cross section of plate +tb=((P*1000)/Ad)/(1000000) //Stress between between the 20-mm-thick plate and the 28-mm-diameter bolt +tb=(tb) //Rounding of the above calculated stress to check if it is less than 350 + +a=(P/2)/((0.02)*(175)) //Dimension of cross section of ring +a=(a) //Rounding dimension of cross section of ring to two decimal places + +b=28 + (2*(a)) //Dimension b at Each End of the Bar +b=(b) //Rounding the dimension b to two decimal places + +h=(P)/((0.020)*(175)) //Dimension h of the Bar +h=(h) //Rounding dimension h of bar to 1 decimal place + + + +//Result +printf("\n Case(a): Diameter of the bolt = %.f mm' ,d) +printf("\n Case(b): Dimension b at Each End of the Bar = %.f mm' ,b) +printf("\n Case(c): Dimension h of the Bar = %f mm' ,h) diff --git a/3764/CH1/EX1.3/Ex1_3.sce b/3764/CH1/EX1.3/Ex1_3.sce new file mode 100644 index 000000000..07e1d44da --- /dev/null +++ b/3764/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,51 @@ +clc +// + +//Variable declaration +Su = 600 //ultimate normal stress(MPa) +FS = 3.3 //Factor of safety with respect to failure +tU=350 //Ultimate shearing stress(MPa) +Cx=40 //X Component of reaction at C(kN) +Cy=65 //Y Component of reaction at C(kN) +Smax=300 //Allowable bearing stress of the steel + +//Calculation +C=sqrt(((40**2))+((65**2))) + +//Case(a) +P=(15*0.6 + 50*0.3)/(0.6) //Allowable bearing stress of the steel(MPa) +Sall=(Su/FS) //Allowable Stress(MPa) +Sall=(Sall) //Rounding Allowable stress to 1 decimal place(MPa) + +Areqa=(P/(Sall*(1000))) //Cross Sectional area(m^2) +Areqa=(Areqa) //Rounding cross sectional area to 5 decimal places(m^2) + +dAB=sqrt(((Areqa)*(4))/(22/7)) //Diameter of AB(m) +dAB=dAB*1000 //Diameter of AB(mm) +dAB=(dAB) //Rounding Diameter of AB(mm) + + +//Case(b) +tALL=tU/FS //Stress(MPa) +tALL=(tALL) //Rounding of Stress + +AreqC=((C/2)/tALL) //Cross sectional area(m^2) +AreqC=AreqC*1000 +AreqC=(AreqC) //Rounding the cross sectional area + +dC=sqrt((4*AreqC)/(22/7)) //Diameter at point C +dC=((dC+1)) //Rounding of the diameter at C + + +//Case(c) + +Areq=((C/2)/Smax) +Areq=Areq*1000 //Cross sectional area(mm^2) +t=(Areq/22) //Thickness of the bracket +t=(t) + + +//Result +printf("\n Case(a): Diameter of the bolt = % f mm' ,dAB) +printf("\n Case(a): Dimension b at Each End of the Bar = % f mm' ,dC) +printf("\n Case(a): Dimension h of the Bar = % f mm' ,t) diff --git a/3764/CH1/EX1.4/Ex1_4.sce b/3764/CH1/EX1.4/Ex1_4.sce new file mode 100644 index 000000000..b476c4979 --- /dev/null +++ b/3764/CH1/EX1.4/Ex1_4.sce @@ -0,0 +1,30 @@ +clc +// + +//Variable declaration +tU=40 //ultimate tensile stress +sU=60 //ultimate shearing stress +FS=3 //Mimnimum factor of safety +dA=(7/16) //Diameter of bolt at A(in) +dB=3/8 //Diameter of bolt at B(in) +dD=3/8 //Diameter of bolt at D(in) +dC=1/2 //Diameter of bolt at C(in) + + +//Calculation +Sall=(sU/FS) //Total tensile stress(kips) +B=Sall*((1/4)*(22/7)*(((7/16)**2))) //Allowable force in the control rod(kips) +C1=1.75*(B) //Control Rod(kips) +tall=(tU/FS) //Total shearing stress +B=2*(tall*(1/4)*(22/7)*(3/8)*(3/8)) //Allowable magnitude of the force B exerted on the bolt +C2=1.75*B //Bolt at B(kips) +D=B //Bolt at D. Since this bolt is the same as bolt B, the allowable force is same(kips) +C3=2.33*D //Bolt at D(kips) +C4=2*(tall*(1/4)*(22/7)*(1/2)*(1/2)) //Bolt at C(kips) + + +//Result +printf("\n Case(a): Control Rod = % f kips' ,C1) +printf("\n Case(b): Bolt at B = % f kips' ,C2) +printf("\n Case(c): Bolt at D = % f kips' ,C3) +printf("\n Case(d): Bolt at C = % f kips' ,C4) |