summaryrefslogtreecommitdiff
path: root/3751/CH5/EX5.11/Ex5_11.sce
diff options
context:
space:
mode:
Diffstat (limited to '3751/CH5/EX5.11/Ex5_11.sce')
-rw-r--r--3751/CH5/EX5.11/Ex5_11.sce46
1 files changed, 46 insertions, 0 deletions
diff --git a/3751/CH5/EX5.11/Ex5_11.sce b/3751/CH5/EX5.11/Ex5_11.sce
new file mode 100644
index 000000000..75a3035bb
--- /dev/null
+++ b/3751/CH5/EX5.11/Ex5_11.sce
@@ -0,0 +1,46 @@
+//Fluid Systems- By Shiv Kumar
+//Chapter 5- Francis Turbine
+//Example 5.11
+//To Determine The Flow Rate, Guide Vane Angles, Runner Vane Angles and Inner and Outer Diameters of the Runner.
+
+ clc
+ clear
+
+//Given Data:-
+ H=86.4; //Net Head, m
+ N=650; //Speed, rpm
+ P=397; //Shaft Power, kW
+ bo_by_Do=0.1; //Breadth Ratio
+ Di_by_Do=0.5; //Di/Do
+ Kf=0.17; //Flow Ratio
+ eta_H=95/100; //Hydraulic Efficiency
+ eta_o=85/100; //Overall Efficiency
+ //As Discharge is Radial and Flow Velocity is Constant,
+ alpha_o=90; //degrees //Vfi=Vfo=Vo
+
+
+//Data Required:-
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Q=P*1000/(rho*g*H*eta_o); //m^3/s
+ Vfi=Kf*sqrt(2*g*H); //m/s
+ Vfo=Vfi;
+ Do=sqrt(Q/(%pi*bo_by_Do*Vfi)); //m
+ Di=Do*Di_by_Do; //m
+ ui=%pi*Do*N/60; //m/s
+ uo= %pi*Di*N/60; //m/s
+ Vwi=eta_H*g*H/ui; //m/s
+ alpha_i=atand(Vfi/Vwi); //degrees
+ beta_i=atand(Vfi/(Vwi-ui)); //Runner Vane Angle at Inlet, degrees
+ beta_o=atand(Vfo/uo); //Runner Vane Angle at Outlet, degrees
+
+
+//Results:-
+ printf(" (i) The Flow Rate, Q=%.3f m^3/s\n",Q )
+ printf(" (ii) Guide Vane Angles are: \n alpha_i=%.2f Degrees , alpha_o=%.f Degrees\n",alpha_i,alpha_o) //The Answer Vary due to Round off Error
+ printf(" (iii) Runner Vane Angles are:- \n beta_i=%.2f Degrees , beta_o =%.2f Degrees \n",beta_i,beta_o ) //The Answer Vary due to Round off Error
+ printf(" (iv) Inner and Outer Diameters of the Runner are: \n Di=%.2f m , Do=%.2f m \n",Di,Do )
+
+