summaryrefslogtreecommitdiff
path: root/3751/CH16/EX16.6
diff options
context:
space:
mode:
Diffstat (limited to '3751/CH16/EX16.6')
-rw-r--r--3751/CH16/EX16.6/Ex16_6.sce37
1 files changed, 37 insertions, 0 deletions
diff --git a/3751/CH16/EX16.6/Ex16_6.sce b/3751/CH16/EX16.6/Ex16_6.sce
new file mode 100644
index 000000000..6c14d6b67
--- /dev/null
+++ b/3751/CH16/EX16.6/Ex16_6.sce
@@ -0,0 +1,37 @@
+//Fluid Systems - By Shiv Kumar
+//Chapter 16- Hydraulic Power and Its Transmissions
+//Example 16.6
+//To Calculate the Rise in Pressure due to Valve Closure in (i)10 seconds, (ii)2.5 seconds.
+ clc
+ clear
+
+//Given Data:-
+ l=2500; //Lenfth of Pipe, m
+ V=1.2 ; //Velocity of Flow, m/s
+ K=20*10^8; //Bulk Modulus of Water, N/m^2
+
+//Data Used:-
+ rho=1000; //Density of Water, Kg/m^3
+
+//Computations:-
+ a=sqrt(K/rho); //Velocity of Pressure Wave, m/s
+ t_c=2*l /a; //Critical time, s
+
+ // (i)
+ t=10; // s
+ //t>t_c. so, This is a case of Gradual valve closure.
+ p=rho*l*V/(t*1000); //Pressure Rise, kPa
+
+ //Result (i)
+ printf("(i)Pressure Rise, p=%.f kPa\n",p)
+
+ //(ii)
+ t=2.5; // s
+ // t<t_c. This is a case of Instantaneous Valve Closure.
+ p=rho*V*a/1000; // Pressure Rise, kPa
+
+ //Result (ii)
+ printf("(ii)Pressure Rise, p=%.2f kPa\n",p) //The answer vary due to round off error
+
+
+