diff options
Diffstat (limited to '3740')
132 files changed, 1321 insertions, 0 deletions
diff --git a/3740/CH1/EX1.1/Ex1_1.jpg b/3740/CH1/EX1.1/Ex1_1.jpg Binary files differnew file mode 100644 index 000000000..ad0677c78 --- /dev/null +++ b/3740/CH1/EX1.1/Ex1_1.jpg diff --git a/3740/CH1/EX1.1/Ex1_1.sce b/3740/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..b60946236 --- /dev/null +++ b/3740/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,13 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 1.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1;//refractive index of air medium
+n2=1.5;//refractive index of glass medium
+
+thetaB=atand(n2/n1);//brewster angle for glass in degrees
+mprintf("Brewster Angle = %.1f degrees",thetaB);
diff --git a/3740/CH1/EX1.2/Ex1_2.jpg b/3740/CH1/EX1.2/Ex1_2.jpg Binary files differnew file mode 100644 index 000000000..ab75dd706 --- /dev/null +++ b/3740/CH1/EX1.2/Ex1_2.jpg diff --git a/3740/CH1/EX1.2/Ex1_2.sce b/3740/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..d9b219055 --- /dev/null +++ b/3740/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,18 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 1.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n=4;//number of sources
+//Let 'I' be the intensity of the sources
+
+//Case (1) :
+//For coherent sources
+mprintf("Maximum irradiance due to superposition of %d coherent sources Imax= %dI",n,n^2);
+
+//Case (2) :
+//For incoherent sources
+mprintf("\n Maximum irradiance due to superposition of %d incoherent sources Imax= %dI",n,n);
diff --git a/3740/CH1/EX1.3/Ex1_3.jpg b/3740/CH1/EX1.3/Ex1_3.jpg Binary files differnew file mode 100644 index 000000000..005320068 --- /dev/null +++ b/3740/CH1/EX1.3/Ex1_3.jpg diff --git a/3740/CH1/EX1.3/Ex1_3.sce b/3740/CH1/EX1.3/Ex1_3.sce new file mode 100644 index 000000000..df26bfb1c --- /dev/null +++ b/3740/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,24 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 1.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given - Case(1)
+D=0.1;//diameter of an objective lens in m
+d=500;//distance of the lens from the sources in m
+lambda=550e-9;//wavelength of the light used in m
+
+Smin=d*lambda/D;//minimum separation of two point sources that can just be resolved in m
+mprintf("Smin = %.2f mm",Smin/1e-3);//division by 10^(-3) to convert into mm
+
+
+//given - Case(2)
+p=1;//order of the fringe
+N=600;//number of lines used per mm
+lambda=550e-9//wavelength of the light used in m
+w=40//width of the diffraction grating in mm
+
+DeltaLambda=lambda/(p*N*w);//minimum wavelength difference that can be resolved in m
+mprintf("\n DeltaLambda = %.3f nm",DeltaLambda/1e-9);//division by 10^(-9) to convert in nm
diff --git a/3740/CH1/EX1.4/Ex1_4.jpg b/3740/CH1/EX1.4/Ex1_4.jpg Binary files differnew file mode 100644 index 000000000..157d2e665 --- /dev/null +++ b/3740/CH1/EX1.4/Ex1_4.jpg diff --git a/3740/CH1/EX1.4/Ex1_4.sce b/3740/CH1/EX1.4/Ex1_4.sce new file mode 100644 index 000000000..42b508c31 --- /dev/null +++ b/3740/CH1/EX1.4/Ex1_4.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 1.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+A=1e-5;//source area in m^2
+T=2e3;//temperature of the source in K
+Epsilon=0.7//emissivity of the surface
+Sigma=5.67e-8//value of Stefan's constant in SI Units
+
+W=Epsilon*Sigma*A*T^4//total power radiated from the source in W
+mprintf("\n Total power radiated from the source = %.2f W",W);
diff --git a/3740/CH1/EX1.5/Ex1_5.jpg b/3740/CH1/EX1.5/Ex1_5.jpg Binary files differnew file mode 100644 index 000000000..2f26a468b --- /dev/null +++ b/3740/CH1/EX1.5/Ex1_5.jpg diff --git a/3740/CH1/EX1.5/Ex1_5.sce b/3740/CH1/EX1.5/Ex1_5.sce new file mode 100644 index 000000000..682f159f7 --- /dev/null +++ b/3740/CH1/EX1.5/Ex1_5.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 1.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+m=9.1e-31;//rest mass of electrons in kg
+e=1.6e-19;//charge of electrons in C
+h=6.62e-34;//Planck's constant in SI Units
+Epsilon0=8.85e-12;//permittivity of vaccuum in SI Units
+
+Eion=m*(e^4)/(8*(h*Epsilon0)^2);//Ionization energy of the atom in J
+mprintf("Ionization energy of the atom = %.3e J or %f eV",Eion,Eion/1.6e-19);//The answers vary due to round off error
diff --git a/3740/CH1/EX1.6/Ex1_6.jpg b/3740/CH1/EX1.6/Ex1_6.jpg Binary files differnew file mode 100644 index 000000000..18489991d --- /dev/null +++ b/3740/CH1/EX1.6/Ex1_6.jpg diff --git a/3740/CH1/EX1.6/Ex1_6.sce b/3740/CH1/EX1.6/Ex1_6.sce new file mode 100644 index 000000000..910aa0cb9 --- /dev/null +++ b/3740/CH1/EX1.6/Ex1_6.sce @@ -0,0 +1,14 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 1.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+v0=1.1e15;//threshold frequency of light in Hz
+e=1.6e-19;//charge of electrons in C
+h=6.62e-34;//Planck's constant in SI Units
+
+phi=h*v0/e;//work function of the metal in eV
+mprintf("Phi = %.1f eV",phi);//The answers vary due to round off error
diff --git a/3740/CH10/EX10.1/Ex10_1.jpg b/3740/CH10/EX10.1/Ex10_1.jpg Binary files differnew file mode 100644 index 000000000..f522df17c --- /dev/null +++ b/3740/CH10/EX10.1/Ex10_1.jpg diff --git a/3740/CH10/EX10.1/Ex10_1.sce b/3740/CH10/EX10.1/Ex10_1.sce new file mode 100644 index 000000000..a58db33b2 --- /dev/null +++ b/3740/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,18 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 10.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+d=50e-6;//Core diameter in m
+a=d/2;//Core radius in m
+n1=1.48;//Dimensionless maximum refractive index of the core
+n2=1.46;//Dimensionless maximum refractive index of cladding
+
+Delta=(n1-n2)/n1;
+mprintf("\n Delta = %.4f",Delta);
+
+LAMBDA=2*%pi*a/sqrt(2*Delta);//Condition for coupling of all the modes together for a graded index fiber
+mprintf("\n LAMBDA = %.2f mm",LAMBDA/1e-3);//Dividing by 10^(-3) to convert into mm
diff --git a/3740/CH10/EX10.2/Ex10_2.jpg b/3740/CH10/EX10.2/Ex10_2.jpg Binary files differnew file mode 100644 index 000000000..33160f37b --- /dev/null +++ b/3740/CH10/EX10.2/Ex10_2.jpg diff --git a/3740/CH10/EX10.2/Ex10_2.sce b/3740/CH10/EX10.2/Ex10_2.sce new file mode 100644 index 000000000..993c640da --- /dev/null +++ b/3740/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,24 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 10.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+Alpha=5e-7;//Coefficient of expansion of pure silica in K^(-1)
+Beta=6.8e-6;//Value for pure silica in K^(-1)
+LambdaB=1.55e-6;//Wavelength in m
+n1=1.46;//Dimensionless Refractive index of Silica
+P11=0.126;//Value of 1st Pockels coefficient
+P12=0.274;//Value of 2nd Pockels coefficient
+Mu=0.17;//Poisson's ratio
+
+DeltaLambdaB=LambdaB*(Alpha+Beta);//Wavelength sensitivity to temperature changes of the fiber in m K^(-1)
+mprintf("\n DeltaLambdaB = %.4f nm K^-1",DeltaLambdaB/1e-9);//Dividing by 10^(-9) to convert to nm K^(-1)
+
+Pe=(n1^2)/2*((1-Mu)*P12-Mu*P11);//Corresponding effective photoelastic coefficient
+mprintf("\n Pe = %.3f",Pe);//The answers vary due to round off error
+
+DeltaLambdaB=LambdaB*(1-Pe);//Wavelength sensitivity as far as sensitivity is concerned in m Epsilon^(-1)
+mprintf("\n DeltaLambdaB = %.1e m Epsilon^-1",DeltaLambdaB);
diff --git a/3740/CH10/EX10.3/Ex10_3.jpg b/3740/CH10/EX10.3/Ex10_3.jpg Binary files differnew file mode 100644 index 000000000..8f265f11f --- /dev/null +++ b/3740/CH10/EX10.3/Ex10_3.jpg diff --git a/3740/CH10/EX10.3/Ex10_3.sce b/3740/CH10/EX10.3/Ex10_3.sce new file mode 100644 index 000000000..562fb574b --- /dev/null +++ b/3740/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 10.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+Rs=1.5e13;//Raman shift in Silica in Hz
+T=323;//Absolute temperature in K
+DeltaT=1;//Change in Temperature in Degree Celsius or K
+h=6.6e-34;//Planck's constant in SI Units
+k=1.38e-23;//Boltzmann constant in SI Units
+
+DeltaRs=h*Rs*DeltaT/(k*(T^2));
+mprintf("\n DeltaRs = %.1e per Degree Celsius",DeltaRs);
diff --git a/3740/CH10/EX10.4/Ex10_4.jpg b/3740/CH10/EX10.4/Ex10_4.jpg Binary files differnew file mode 100644 index 000000000..ecaf05879 --- /dev/null +++ b/3740/CH10/EX10.4/Ex10_4.jpg diff --git a/3740/CH10/EX10.4/Ex10_4.sce b/3740/CH10/EX10.4/Ex10_4.sce new file mode 100644 index 000000000..c969674f5 --- /dev/null +++ b/3740/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,17 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 10.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+N=1000;//Number of turns of fiber
+r=0.1;//Radius of fiber in m
+Omega=15*%pi/(180*3600);//Multiplying by %pi/180 & Dividing by 3600 to convert the earth's rotation rate unit into rad/s
+Lambda0=1e-6;//Wavelength of beam in m
+c=3e8;//Speed of light in m/s
+
+A=%pi*(r^2);//Area of the fiber ring in m^2
+PhiS=8*%pi*Omega*A*N/(Lambda0*c);//Corresponding Phase shift in the beam in radians
+mprintf("\n PhiS = %.1e rad",PhiS);
diff --git a/3740/CH10/EX10.5/Ex10_5.jpg b/3740/CH10/EX10.5/Ex10_5.jpg Binary files differnew file mode 100644 index 000000000..5e4444164 --- /dev/null +++ b/3740/CH10/EX10.5/Ex10_5.jpg diff --git a/3740/CH10/EX10.5/Ex10_5.sce b/3740/CH10/EX10.5/Ex10_5.sce new file mode 100644 index 000000000..ab89abf0a --- /dev/null +++ b/3740/CH10/EX10.5/Ex10_5.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 10.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+V=4;//Value of Verdet constant in rad m^-1 T^-1
+Mur=1;//Relative permeability of Silica
+Mu0=4*%pi*1e-7;//Permeability of free space in SI Units
+n=10;//Number of turns of the fiber coil
+I=30;//Current flowing through the fiber in A
+
+Thetar=Mu0*Mur*n*V*I;//Corresponding polarization rotation in radians
+mprintf("\n Thetar = %.2f degrees",Thetar*180/%pi);//Multiplying by '180/%pi' to convert in degrees
diff --git a/3740/CH2/EX2.1/Ex2_1.jpg b/3740/CH2/EX2.1/Ex2_1.jpg Binary files differnew file mode 100644 index 000000000..d2d5b141e --- /dev/null +++ b/3740/CH2/EX2.1/Ex2_1.jpg diff --git a/3740/CH2/EX2.1/Ex2_1.sce b/3740/CH2/EX2.1/Ex2_1.sce new file mode 100644 index 000000000..dd63ab83a --- /dev/null +++ b/3740/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,28 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 2.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given - Case(1)
+NA=6e26;//Avagadro's number
+rho=8.93e3;//density of copper in SI Units
+A=63.54;//Atomic mass number of Cu
+e=1.6e-19;//charge of electrons in C
+m=9.1e-31;//rest mass of electrons in kg
+T=2.6e-14;//mean free time between collisions in s
+
+n=NA*rho/A;//number of atoms per unit volume in m^(-3)
+mprintf("n = %.1e m^(-3)",n);
+SigmaCu=n*(e^2)*T/m;//electrical conductivity of Cu in SI Units
+mprintf("\n Sigma of Cu = %.1e (Ohm m)^(-1)",SigmaCu);//The answers vary due to round off error
+
+//given - Case(2)
+ni=1.6e16;//number of holes or electrons per unit volume of intrinsic silicon in m^(-3)
+e=1.6e-19;//charge of electrons in C
+Muc=0.135;//electron mobility in SI Units
+Mun=0.048;//hole mobility in SI Units
+
+SigmaSi=ni*e*(Muc+Mun);//electrical conductivity of Si in SI Units
+mprintf("\n Sigma of Si = %.1e (Ohm m)^(-1)",SigmaSi);
diff --git a/3740/CH2/EX2.2/Ex2_2.jpg b/3740/CH2/EX2.2/Ex2_2.jpg Binary files differnew file mode 100644 index 000000000..4e7d35e6d --- /dev/null +++ b/3740/CH2/EX2.2/Ex2_2.jpg diff --git a/3740/CH2/EX2.2/Ex2_2.sce b/3740/CH2/EX2.2/Ex2_2.sce new file mode 100644 index 000000000..68737ad22 --- /dev/null +++ b/3740/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,14 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 2.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+//Let the quanity 'me/m' be denoted by M
+M=0.26;
+Epsilonr=11.8//relative permittivity of Si
+
+Ed=13.6*M/(Epsilonr^2);//Energy required to excite the electrons from donor levels to the conduction band in eV
+mprintf("Ed = %.3f eV", Ed);
diff --git a/3740/CH2/EX2.3/Ex2_3.jpg b/3740/CH2/EX2.3/Ex2_3.jpg Binary files differnew file mode 100644 index 000000000..164e70033 --- /dev/null +++ b/3740/CH2/EX2.3/Ex2_3.jpg diff --git a/3740/CH2/EX2.3/Ex2_3.sce b/3740/CH2/EX2.3/Ex2_3.sce new file mode 100644 index 000000000..e88ea3518 --- /dev/null +++ b/3740/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 2.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+m=9.1e-31;//rest mass of electrons in kg
+me=0.55*m;//effective mass of electrons in kg
+h=6.62e-34;//Planck's constant in SI Units
+k=1.38e-23;//Boltzmann's constant in SI Units
+T=300;//temperature of the source in K
+
+Nc=2*(2*%pi*me*k*T/(h^2))^(3/2);//effective density of states in the conduction band
+mprintf("Nc = %.2e m^(-3)",Nc);//The answers vary due to round off error
diff --git a/3740/CH2/EX2.4/Ex2_4.jpg b/3740/CH2/EX2.4/Ex2_4.jpg Binary files differnew file mode 100644 index 000000000..158671cd6 --- /dev/null +++ b/3740/CH2/EX2.4/Ex2_4.jpg diff --git a/3740/CH2/EX2.4/Ex2_4.sce b/3740/CH2/EX2.4/Ex2_4.sce new file mode 100644 index 000000000..0d0cd0436 --- /dev/null +++ b/3740/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,21 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 2.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n=5e24;//Donor concentration in m^(-3)
+
+//Case (i)
+B=7.2e-16;//Recombination constant for GaAs in m^3 s^(-1)
+Th=1/(B*n);//Hole lifetime in s
+mprintf("Th for GaAs = %.1f ps",Th/1e-12);//Dividing by 10^(-12) to convert to ps
+//The answers vary due to round off error
+
+//Case (i)
+B=1.8e-21;//Recombination constant for Si in m^3 s^(-1)
+Th=1/(B*n);//Hole lifetime in s
+mprintf("\n Th for Si = %.1f us",Th/1e-6);//Dividing by 10^(-6) to convert to us
+//The answers vary due to round off error
diff --git a/3740/CH2/EX2.5/Ex2_5.jpg b/3740/CH2/EX2.5/Ex2_5.jpg Binary files differnew file mode 100644 index 000000000..3551a89db --- /dev/null +++ b/3740/CH2/EX2.5/Ex2_5.jpg diff --git a/3740/CH2/EX2.5/Ex2_5.sce b/3740/CH2/EX2.5/Ex2_5.sce new file mode 100644 index 000000000..777e7182d --- /dev/null +++ b/3740/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,17 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 2.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+k=1.38e-23;//Boltzmann's constant in SI Units
+T=290;//room temperature in K
+e=1.6e-19;//charge of electrons in C
+Nd=1e22;//donor impurity level in m(-3)
+Na=1e24;//acceptor impurity level in m(-3)
+ni=2.4e19;//intrinsic electron concentration in m^(-3)
+
+V0=k*T/e*log(Na*Nd/(ni^2));//contact potential difference in V
+mprintf("V0 = %.2f V",V0);
diff --git a/3740/CH2/EX2.6/Ex2_6.jpg b/3740/CH2/EX2.6/Ex2_6.jpg Binary files differnew file mode 100644 index 000000000..4c8615926 --- /dev/null +++ b/3740/CH2/EX2.6/Ex2_6.jpg diff --git a/3740/CH2/EX2.6/Ex2_6.sce b/3740/CH2/EX2.6/Ex2_6.sce new file mode 100644 index 000000000..47ee543f0 --- /dev/null +++ b/3740/CH2/EX2.6/Ex2_6.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 2.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+V=-4;//reverse bias voltage applied to a Si diode in V
+//The negative sign indicates reverse bias
+Nd=4e21;//donor impurity level in m^(-3)
+V0=0.8;//potential barrier of the diode in V
+Epsilon0=8.85e-12;//permittivity of free space in SI Units
+Epsilonr=11.8;//relative permittivity of the diode
+A=4e-7;//junction area of the diode in m^2
+e=1.6e-19;//charge of electrons in C
+
+Cj=A/2*(2*e*Epsilon0*Epsilonr*Nd/(V0-V))^(1/2);//junction capacitance of the diode in F
+mprintf("Cj = %.1f pF",Cj/1e-12);//division by 10^(-12) to convert into pF
diff --git a/3740/CH2/EX2.7/Ex2_7.jpg b/3740/CH2/EX2.7/Ex2_7.jpg Binary files differnew file mode 100644 index 000000000..d19028230 --- /dev/null +++ b/3740/CH2/EX2.7/Ex2_7.jpg diff --git a/3740/CH2/EX2.7/Ex2_7.sce b/3740/CH2/EX2.7/Ex2_7.sce new file mode 100644 index 000000000..681f7b63c --- /dev/null +++ b/3740/CH2/EX2.7/Ex2_7.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 2.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+V=-4;//reverse bias voltage applied to a Si diode in V
+//The negative sign indicates reverse bias
+Nd=4e21;//donor impurity level in m^(-3)
+V0=0.8;//potential barrier of the diode in V
+Epsilon0=8.85e-12;//permittivity of free space in SI Units
+Epsilonr=11.8;//relative permittivity of the diode
+A=4e-7;//junction area of the diode in m^2
+e=1.6e-19;//charge of electrons in C
+
+Cj=A/2*(2*e*Epsilon0*Epsilonr*Nd/(V0-V))^(1/2);//junction capacitance of the diode in F
+mprintf("Cj = %.1f pF",Cj/1e-12);//division by 10^(-12) to convert into pF
diff --git a/3740/CH2/EX2.8/Ex2_8.jpg b/3740/CH2/EX2.8/Ex2_8.jpg Binary files differnew file mode 100644 index 000000000..6f6e0abe4 --- /dev/null +++ b/3740/CH2/EX2.8/Ex2_8.jpg diff --git a/3740/CH2/EX2.8/Ex2_8.sce b/3740/CH2/EX2.8/Ex2_8.sce new file mode 100644 index 000000000..283dc9cb9 --- /dev/null +++ b/3740/CH2/EX2.8/Ex2_8.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 2.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+Lz=10e-9;//Thickness of a GaAs quantum well in m
+m=9.1e-31;//Rest mass of an electron in kg
+me=0.068*m;//Mass of electrons in conduction band
+mh=0.56*m;//Mass of electrons in valence band
+h=6.62e-34;//Planck's constant in SI Units
+
+DeltaEg=(h^2)/(8*(Lz)^2)*(1/me+1/mh);//Energy gap in the GaAs quantum well
+mprintf("DeltaEg = %.2e J",DeltaEg);
diff --git a/3740/CH3/EX3.1/Ex3_1.jpg b/3740/CH3/EX3.1/Ex3_1.jpg Binary files differnew file mode 100644 index 000000000..18da4e2f7 --- /dev/null +++ b/3740/CH3/EX3.1/Ex3_1.jpg diff --git a/3740/CH3/EX3.1/Ex3_1.sce b/3740/CH3/EX3.1/Ex3_1.sce new file mode 100644 index 000000000..4cdb6c872 --- /dev/null +++ b/3740/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 3.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+w=10e-3;//Width of the KD*P crystal in m
+r=26.4e-12;//Linear electro-optic coefficient of the crystal in m/V
+n0=1.51;//refractive index of the crystal
+E=4000;//Applied voltage in V
+
+//Let the change in refractive index be Deltan = |n-n0|
+Deltan=(1/2)*r*E*(n0^3)/w;//Dimensionless change in refractive index of the crystal
+mprintf("The change in refractive index of the crystal = %.1e",Deltan);
diff --git a/3740/CH3/EX3.2/Ex3_2.jpg b/3740/CH3/EX3.2/Ex3_2.jpg Binary files differnew file mode 100644 index 000000000..ac46e2224 --- /dev/null +++ b/3740/CH3/EX3.2/Ex3_2.jpg diff --git a/3740/CH3/EX3.2/Ex3_2.sce b/3740/CH3/EX3.2/Ex3_2.sce new file mode 100644 index 000000000..bb04a6da2 --- /dev/null +++ b/3740/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,14 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 3.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+lambda=1.06e-6;//Wavelength at which half-wave voltage is to be calculated, in m
+r=10.6e-12;//Linear electro-optic coefficient of KDP crystal in m/V
+n0=1.51;//refractive index of the crystal
+
+Vpi=lambda/(2*r*(n0^3));//Half-wave voltage for the crystal in V
+mprintf("The half-wave voltage of the crystal = %.1f kV",Vpi/1e3);//Division by 10^3 to convert into kV
diff --git a/3740/CH3/EX3.3/Ex3_3.jpg b/3740/CH3/EX3.3/Ex3_3.jpg Binary files differnew file mode 100644 index 000000000..0c1bc59a8 --- /dev/null +++ b/3740/CH3/EX3.3/Ex3_3.jpg diff --git a/3740/CH3/EX3.3/Ex3_3.sce b/3740/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..0eeb09b56 --- /dev/null +++ b/3740/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,21 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 3.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+Phi=%pi/30;//Given phase retardation
+Deltaf=1e9;//Frequency bandwidth in Hz
+D=25e-3;//Diameter of the circular aperture of a KD*P Pockels cell in m
+L=30e-3;//Length of the cell in m
+lambda=633e-9;//Wavelength in m
+Epsilon0=8.85e-12;//Permittivity of free space in SI Units
+Epsilonr=50;//Dimensionless Relative permittivty of the crystal
+r=26.4e-12;//Linear electro-optic coefficient of KD*P crystal in m/V
+n0=1.51;//refractive index of the crystal
+
+A=%pi*((D/2)^2);//Cross-sectional area of the crystal in m^2
+P=(Phi^2)*(lambda^2)*A*Epsilon0*Epsilonr*Deltaf/(4*%pi*(r^2)*(n0^6)*L);//Power required for the desired phase retardation in W
+mprintf("P = %.1f W",P);
diff --git a/3740/CH3/EX3.4/Ex3_4.jpg b/3740/CH3/EX3.4/Ex3_4.jpg Binary files differnew file mode 100644 index 000000000..730639cda --- /dev/null +++ b/3740/CH3/EX3.4/Ex3_4.jpg diff --git a/3740/CH3/EX3.4/Ex3_4.sce b/3740/CH3/EX3.4/Ex3_4.sce new file mode 100644 index 000000000..7c23668e0 --- /dev/null +++ b/3740/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,24 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 3.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+lambda=633e-9;//Wavelength in m
+Deltaf=5e6;//Frequency bandwidth in Hz
+L=50e-3;//Length of the modulator in m
+eta=0.7;//diffraction efficiency
+lambdaa=4.3e-5;//Acoustic wavelength in m
+va=3500;//Acoustic velocity in m/s
+
+ThetaB=asind(lambda/(2*lambdaa));//Angle of diffraction in degrees
+mprintf("ThetaB = %.2f degrees",ThetaB);
+
+//As eta=(sin(Phi/2))^2, Rearranging the terms we get:
+Phi=2*asind(sqrt(eta));
+mprintf("\n Phi = %.1f degrees",Phi);
+
+B=va/Deltaf;//Maximum optical beamwidth in m
+mprintf("\n B = %.1f mm",B/1e-3);//Division by 10^(-3) to convert into mm
diff --git a/3740/CH3/EX3.5/Ex3_5.jpg b/3740/CH3/EX3.5/Ex3_5.jpg Binary files differnew file mode 100644 index 000000000..ec7d7f91b --- /dev/null +++ b/3740/CH3/EX3.5/Ex3_5.jpg diff --git a/3740/CH3/EX3.5/Ex3_5.sce b/3740/CH3/EX3.5/Ex3_5.sce new file mode 100644 index 000000000..3e942f6bf --- /dev/null +++ b/3740/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 3.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given appropriate refractive indices for ADP :-
+n0w=1.4943;
+new=1.4603;
+n02w=1.5132;
+ne2w=1.4712;
+
+Thetam=asind(sqrt((n0w^(-2)-n02w^(-2))/(ne2w^(-2)-n02w^(-2))));//Phase matching angle for the ADP
+mprintf("Thetam = %d degrees", Thetam);//The answer provided in the textbook is wrong
diff --git a/3740/CH3/EX3.6/Ex3_6.jpg b/3740/CH3/EX3.6/Ex3_6.jpg Binary files differnew file mode 100644 index 000000000..c8df5f5a3 --- /dev/null +++ b/3740/CH3/EX3.6/Ex3_6.jpg diff --git a/3740/CH3/EX3.6/Ex3_6.sce b/3740/CH3/EX3.6/Ex3_6.sce new file mode 100644 index 000000000..ae6adf851 --- /dev/null +++ b/3740/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 3.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+nOmega=1.5019;//refractive index corresponding to the ray of frequency Omega
+n2Omega=1.4802;//refractive index corresponding to the ray of frequency 2*Omega
+Lambda0=0.8e-6;//vacuum wavelength at the fundamental frequency in m
+
+lc=Lambda0/(4*(nOmega-n2Omega));//Coherence length in m
+mprintf("\n lc = %.1e m",lc);//The answers vary due to round off error
+
diff --git a/3740/CH4/EX4.1/Ex4_1.jpg b/3740/CH4/EX4.1/Ex4_1.jpg Binary files differnew file mode 100644 index 000000000..a05b724ad --- /dev/null +++ b/3740/CH4/EX4.1/Ex4_1.jpg diff --git a/3740/CH4/EX4.1/Ex4_1.sce b/3740/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..c929538e8 --- /dev/null +++ b/3740/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,21 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 4.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+//Let DeltaE = Ec - Ed
+DeltaE=0.4;//Depth of the conduction band below the conduction band in eV
+kT=0.025;//Value of k*T for room temperature in eV
+Q=1e8;//Constant value in s^(-1)
+
+//Let the probability of escape of a trapped electron per second be p
+p=Q*exp(-DeltaE/kT);
+mprintf("\n Probability of escape of a trapped electron = %.1f s^(-1)",p);//The answers vary due to round off error
+
+//Let the corresponding luminescence lifetime in sec be t
+t=1/p;
+mprintf("\n t = %.1f s",t);
+
diff --git a/3740/CH4/EX4.2/Ex4_2.jpg b/3740/CH4/EX4.2/Ex4_2.jpg Binary files differnew file mode 100644 index 000000000..dd283c21b --- /dev/null +++ b/3740/CH4/EX4.2/Ex4_2.jpg diff --git a/3740/CH4/EX4.2/Ex4_2.sce b/3740/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..2f3b7d666 --- /dev/null +++ b/3740/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 4.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=3.6;//Refractive index of 1st medium (GaAs)
+n2=1;//Refractive index of 2nd medium (air)
+
+F=(1/4)*(n2/n1)^2*(1-((n1-n2)/(n1+n2))^2);//Dimensionless Fractional transmission for isotropic radiation
+mprintf("\n F = %.3f",F);
+
+Thetac=asind(n2/n1);//critical angle in degrees
+mprintf("\n Critical angle = %.1f degrees",Thetac);//The answers vary due to round off error
diff --git a/3740/CH4/EX4.3/Ex4_3.jpg b/3740/CH4/EX4.3/Ex4_3.jpg Binary files differnew file mode 100644 index 000000000..9449d7541 --- /dev/null +++ b/3740/CH4/EX4.3/Ex4_3.jpg diff --git a/3740/CH4/EX4.3/Ex4_3.sce b/3740/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..2fa312d5f --- /dev/null +++ b/3740/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,28 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 4.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+d=0.2e-3;//Chip diameter of LED in m
+D=1;//Distance between LED and the viewer in m
+lambda=550e-9;//Wavelength emitted in m
+eta=0.001;//Quantum efficiency of LED
+V=2;//Operating voltage in V
+I=50e-3;//Operating current in A
+h=6.626e-34;//Planck's constant in SI Units
+c=3e8;//Speed of light in air in m/s
+e=1.6e-19;//Electronic charge in C
+
+Theta=2*atand(d/(2*D));//Angle subtended by the emitting area in degrees
+mprintf("\n Theta = %.5f degrees",Theta);
+//As Theta is less than 0.01667, LED acts as a point source
+
+//Let the photon emission rate be denoted by 'Rate'
+Rate=I/e;//Number of photons emitted per second
+
+W=(h*c/lambda)*eta*Rate;//Total radiant power in W
+mprintf("\n W = %.2e Watts",W);
+
diff --git a/3740/CH5/EX5.1/Ex5_1.jpg b/3740/CH5/EX5.1/Ex5_1.jpg Binary files differnew file mode 100644 index 000000000..ae79d23be --- /dev/null +++ b/3740/CH5/EX5.1/Ex5_1.jpg diff --git a/3740/CH5/EX5.1/Ex5_1.sce b/3740/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..40eb4670a --- /dev/null +++ b/3740/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 5.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+h=6.6e-34;//Planck's constant in SI Units
+nu=5e14;//Average frequency in Hz
+k=1.38e-23;//Boltzmann constant in SI Units
+T=2000;//Operating temperature in K
+
+R=exp(h*nu/(k*T))+1;//Dimensionless ratio of rates of spontaneous and stimulated emissions
+mprintf("\n R = %.1e",R);//The answers vary due to round off error
diff --git a/3740/CH5/EX5.2/Ex5_2.jpg b/3740/CH5/EX5.2/Ex5_2.jpg Binary files differnew file mode 100644 index 000000000..52953014d --- /dev/null +++ b/3740/CH5/EX5.2/Ex5_2.jpg diff --git a/3740/CH5/EX5.2/Ex5_2.sce b/3740/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..84a4e244e --- /dev/null +++ b/3740/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,21 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 5.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+h=6.6e-34;//Planck's constant in SI Units
+c=3e8;//Speed of light in m/s
+lambda=550e-9;//Average wavelength in m
+k=1.38e-23;//Boltzmann constant in SI Units
+T=300;//Operating temperature in K
+
+//Let the difference between the two energy levels be DeltaE
+DeltaE=h*c/lambda;//Difference in energy levels in J
+mprintf("\n E2-E1 = %.2f eV",DeltaE/1.6e-19);//Division by 1.6*10^(-19) to convert into eV
+
+//Let the relative population of the energy levels 'N2/N1' be N
+N=exp(-DeltaE/(k*T));
+mprintf("\n N2/N1 = %.1e",N);//The answer provided in the textbook is wrong
diff --git a/3740/CH5/EX5.3/Ex5_3.jpg b/3740/CH5/EX5.3/Ex5_3.jpg Binary files differnew file mode 100644 index 000000000..eaf8c5c19 --- /dev/null +++ b/3740/CH5/EX5.3/Ex5_3.jpg diff --git a/3740/CH5/EX5.3/Ex5_3.sce b/3740/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..7a997a414 --- /dev/null +++ b/3740/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,21 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 5.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+h=6.6e-34;//Planck's constant in SI Units
+T21=230e-6;//Spontaneous lifetime in s
+lambda=1.06e-6;//Wavelength in m
+n=1.82;//Refractive index of medium
+DeltaNu=3e12;//Linewidth in Hz
+k=1;//Given value of gain coefficient in m^(-1)
+
+B21=(lambda^3)/(8*%pi*h*T21);
+mprintf("\n B21 = %.1e m^3 W^-1 s^-3",B21);
+
+//Let the inversion density (N2-g2/g1*N1) be Di
+Di=k*lambda*DeltaNu/(B21*h*n);
+mprintf("\n N2-g2/g1*N1 = %.1e m^(-3)",Di);//The answer provided in the textbook is wrong
diff --git a/3740/CH5/EX5.4/Ex5_4.jpg b/3740/CH5/EX5.4/Ex5_4.jpg Binary files differnew file mode 100644 index 000000000..0cba9910f --- /dev/null +++ b/3740/CH5/EX5.4/Ex5_4.jpg diff --git a/3740/CH5/EX5.4/Ex5_4.sce b/3740/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..b72806df3 --- /dev/null +++ b/3740/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,13 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 5.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1;//Refractive index of air medium
+n2=3.6;//Refractive index of GaAs medium
+
+R=((n2-n1)/(n2+n1))^2;//Reflectance at GaAs/air interface by Fresnel equation
+mprintf("\n R = %.2f",R);
diff --git a/3740/CH5/EX5.5/Ex5_5.jpg b/3740/CH5/EX5.5/Ex5_5.jpg Binary files differnew file mode 100644 index 000000000..9298dc79d --- /dev/null +++ b/3740/CH5/EX5.5/Ex5_5.jpg diff --git a/3740/CH5/EX5.5/Ex5_5.sce b/3740/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..514b322d2 --- /dev/null +++ b/3740/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,27 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 5.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+lambda=0.84e-6;//wavelength in m
+DeltaNu=1.45e13;//Transition linewidth in Hz
+Gamma=3.5e3;//Loss coefficient in m^(-1)
+n=3.6;//Refractive index of GaAs medium
+n1=1;//Refractive index of air medium
+l=300e-6;//Length in m
+d=2e-6;//Diameter in m
+etai=1;//Internal quantum efficiency
+e=1.6e-19;//Electronic charge in C
+
+R=((n-n1)/(n+n1))^2;//Reflectance at GaAs/air interface by Fresnel equation
+mprintf("\n R = %.2f",R);
+
+Kth=Gamma+1/(2*l)*log(1/R^2);//Threshold gain in m^(-1)
+mprintf("\n Kth = %.1f m^(-1)",Kth);//The answers vary due to round off error
+
+Jth=8*%pi*e*d*DeltaNu*(n^2)/(etai*(lambda^2))*Kth;//Threshold current density in A m^(-2)
+mprintf("\n Jth = %.1f A mm^-2",Jth/1e6);//Dividing by 10^6 to convert into A mm^(-2)
+//The answers vary due to round off error
diff --git a/3740/CH5/EX5.6/Ex5_6.jpg b/3740/CH5/EX5.6/Ex5_6.jpg Binary files differnew file mode 100644 index 000000000..08f45e7f8 --- /dev/null +++ b/3740/CH5/EX5.6/Ex5_6.jpg diff --git a/3740/CH5/EX5.6/Ex5_6.sce b/3740/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..0e1323d84 --- /dev/null +++ b/3740/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,14 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 5.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+W=5e-3;//Optical output power of laser in W
+V=2500;//Operating voltage in V
+I=10e-3;//Operating current in A
+
+eta=W/(V*I);//Overall power efficiency
+mprintf("\n Power efficiency = %.2f percent",eta*100);//Multiplying by 100 to convert in percentage
diff --git a/3740/CH6/EX6.1/Ex6_1.jpg b/3740/CH6/EX6.1/Ex6_1.jpg Binary files differnew file mode 100644 index 000000000..96efc3bb6 --- /dev/null +++ b/3740/CH6/EX6.1/Ex6_1.jpg diff --git a/3740/CH6/EX6.1/Ex6_1.sce b/3740/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..68fdbaf3a --- /dev/null +++ b/3740/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,28 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 6.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+DeltaNu=1.1e11;//Fluorescent linewidth in Hz
+L=0.1;//Length of the laser rod in m
+c=3e8;//Speed of light in m/s
+
+//Let the mode separation be 'M'
+M=c/(2*L);//Mode separation in Hz
+mprintf("\n Mode separation = %.1e Hz",M);
+
+//Let the number of modes oscillating be 'N'
+N=DeltaNu/M;
+mprintf("\n The number of modes oscillating = %d",N);
+
+//Let the pulse separation in seconds be 't'
+t=2*L/c;
+mprintf("\n Pulse separation = %.1f ns",t/1e-9);//Dividing by 10^(-9) to convert into ns
+
+//Let the pulse duration be 'T'
+T=t/N;
+mprintf("\n Pulse duration = %.1f ps",T/1e-12);//Dividing by 10^(-12) to convert into ps
+//The answers vary due to round off error
diff --git a/3740/CH6/EX6.2/Ex6_2.jpg b/3740/CH6/EX6.2/Ex6_2.jpg Binary files differnew file mode 100644 index 000000000..dc987c56f --- /dev/null +++ b/3740/CH6/EX6.2/Ex6_2.jpg diff --git a/3740/CH6/EX6.2/Ex6_2.sce b/3740/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..3f176da99 --- /dev/null +++ b/3740/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,17 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 6.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+Ni=1e24;//Population Inversion in m^-3
+Nu21=5e14;//Frequency of laser in Hz
+V=1e-5;//Volume in m^3
+h=6.63e-34;//Planck's constant in SI Units
+
+//Assuming Nf<<Ni, we get
+E=(1/2)*h*Nu21*Ni*V;//Total energy emitted in the pulse in J
+mprintf("\n E= %.1f J",E)
+
diff --git a/3740/CH6/EX6.3/Ex6_3.jpg b/3740/CH6/EX6.3/Ex6_3.jpg Binary files differnew file mode 100644 index 000000000..a9ccad4aa --- /dev/null +++ b/3740/CH6/EX6.3/Ex6_3.jpg diff --git a/3740/CH6/EX6.3/Ex6_3.sce b/3740/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..14b606a8f --- /dev/null +++ b/3740/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 6.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+E=1.7;//Total energy emitted in the pulse in J (From previous example)
+L=0.1;//Cavity length of the laser in m
+R=0.8;//Mirror reflectance of the laser
+c=3e8;//Speed of light in air in m/s
+
+tc=L/((1-R)*c);//Cavity lifetime of the laser in s
+mprintf("\n tc = %.1f ns",tc/1e-9);//Dividing by 10^(-9) to convert in ns
+
+P=E/tc;//Pulse power in W
+mprintf("\n P = %.1e W",P);
+
diff --git a/3740/CH6/EX6.4/Ex6_4.jpg b/3740/CH6/EX6.4/Ex6_4.jpg Binary files differnew file mode 100644 index 000000000..a4d4d2581 --- /dev/null +++ b/3740/CH6/EX6.4/Ex6_4.jpg diff --git a/3740/CH6/EX6.4/Ex6_4.sce b/3740/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..a401aa301 --- /dev/null +++ b/3740/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 6.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+//Let the focal length ratio of objective lens to eyepiece lens of a telescope be f2/f1 = 'f'
+f=30;
+Lambda=633e-9;//wavelength of the laser beam in m
+D=3e-3;//Diameter of the plasma tube in m
+
+Theta1=Lambda/D;//Divergence of the beam in radians
+mprintf("\n Theta1 = %.1e rad",Theta1);
+
+Theta2=Theta1/f;//Divergence of the beam after collimation in radians
+mprintf("\n Theta2 = %.1e rad",Theta2);
+
diff --git a/3740/CH6/EX6.5/Ex6_5.jpg b/3740/CH6/EX6.5/Ex6_5.jpg Binary files differnew file mode 100644 index 000000000..597c57743 --- /dev/null +++ b/3740/CH6/EX6.5/Ex6_5.jpg diff --git a/3740/CH6/EX6.5/Ex6_5.sce b/3740/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..6bbc2874f --- /dev/null +++ b/3740/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,42 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 6.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given - Case(i)
+Lambda=589e-6;//wavelength of the sodium lamp in m
+DeltaNu=5.1e11;//Linewidth of the sodium D lines in Hz
+c=3e8;//Speed of light in air in m/s
+
+mprintf("\n For Sodium Lamp:");
+tc=1/DeltaNu;//Coherence time in s
+mprintf("\n tc = %.1e s",tc);
+
+Lc=tc*c;//length of emitted wave in m
+mprintf("\n Lc = %.1f mm\n",Lc/1e-3);//Division by 10^(-3) to convert into mm
+
+
+//given - Case(ii)
+DeltaNu=1500e6;//Linewidth of He-Ne laser in Hz
+c=3e8;//Speed of light in air in m/s
+
+mprintf("\n For He-Ne Laser with many operating modes:");
+tc=1/DeltaNu;//Coherence time in s
+mprintf("\n tc = %.1e s",tc);
+
+Lc=tc*c;//length of emitted wave in m
+mprintf("\n Lc = %.1f m\n",Lc);
+
+
+//given - Case(iii)
+DeltaNu=1e6;//Linewidth of He-Ne laser in Hz
+c=3e8;//Speed of light in air in m/s
+
+mprintf("\n For He-Ne Laser with single operating mode:");
+tc=1/DeltaNu;//Coherence time in s
+mprintf("\n tc = %.1e s",tc);
+
+Lc=tc*c;//length of emitted wave in m
+mprintf("\n Lc = %.1f m\n",Lc);
diff --git a/3740/CH6/EX6.6/Ex6_6.jpg b/3740/CH6/EX6.6/Ex6_6.jpg Binary files differnew file mode 100644 index 000000000..bbf25e0c9 --- /dev/null +++ b/3740/CH6/EX6.6/Ex6_6.jpg diff --git a/3740/CH6/EX6.6/Ex6_6.sce b/3740/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..b3318dee0 --- /dev/null +++ b/3740/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,18 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 6.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+Lambda=632.8e-9;//Wavelength of the laser in m
+F=1;//Focal ratio of the lens
+Prad=10e-3;//Power radiated by the laser in W
+
+rs=2*Lambda*F/%pi;//Radius of the focused spot in m
+mprintf("\n rs = %.1e m",rs);
+
+//Let the power per unit area in W m^-2 be P
+P=Prad/(%pi*(rs)^2);
+mprintf("\n P = %.1e W m^-2",P);
diff --git a/3740/CH6/EX6.7/Ex6_7.jpg b/3740/CH6/EX6.7/Ex6_7.jpg Binary files differnew file mode 100644 index 000000000..13a6e6c8f --- /dev/null +++ b/3740/CH6/EX6.7/Ex6_7.jpg diff --git a/3740/CH6/EX6.7/Ex6_7.sce b/3740/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..f8f1383aa --- /dev/null +++ b/3740/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,23 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 6.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+Lambda=10.6e-6;//Wavelength of the laser in m
+f=200e-3;//Focal length of the lens in m
+D=50e-3;//Diameter of aperture of focusing lens
+
+rs=2*Lambda*f/(%pi*D);//Radius of the focused spot in m
+mprintf("\n rs = %.1f um",rs/1e-6);//Dividing by 10^(-6) to convert to um
+//The answers vary due to round off error
+
+//Let the ratio w(z)/w0 be w
+w=1.1;
+w0=rs;//Also given
+
+z=%pi*w0^2/Lambda*sqrt((w^2)-1);//Depth of focus in m
+mprintf("\n z = %.2f mm",z/1e-3);//Dividing by 10^(-3) to convert to mm
+//The answers vary due to round off error
diff --git a/3740/CH7/EX7.1/Ex7_1.jpg b/3740/CH7/EX7.1/Ex7_1.jpg Binary files differnew file mode 100644 index 000000000..e502cc7a1 --- /dev/null +++ b/3740/CH7/EX7.1/Ex7_1.jpg diff --git a/3740/CH7/EX7.1/Ex7_1.sce b/3740/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..07ec587ac --- /dev/null +++ b/3740/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 7.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+D=1e9;//Specific detectivity of detector in m Hz^(1/2) W^(-1)
+Lambda=2e-6;//Wavelength in m
+A=25e-6//Detector area in m^2
+Deltaf=10e3;//Detection bandwidth in Hz
+
+NEP=sqrt(A*Deltaf)/D;//Detector sensitivity in W
+mprintf("\n NEP = %.1e W",NEP);
diff --git a/3740/CH7/EX7.2/Ex7_2.jpg b/3740/CH7/EX7.2/Ex7_2.jpg Binary files differnew file mode 100644 index 000000000..d6249e202 --- /dev/null +++ b/3740/CH7/EX7.2/Ex7_2.jpg diff --git a/3740/CH7/EX7.2/Ex7_2.sce b/3740/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..e07f7ebe1 --- /dev/null +++ b/3740/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,17 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 7.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+eta=0.5;//Dimensionless Quantum efficiency of photocathode
+e=1.6e-19;//Electronic charge in C
+Plambda=1e-6;//Radiation power incident on the photodiode in W
+Lambda0=500e-9;//Wavelength of incident light in m
+h=6.6e-34;//Planck's constant in SI Units
+c=3e8;//Speed of light in vacuum in m/s
+
+ilambda=eta*e*Plambda*Lambda0/(h*c);//Corresponding current generated in A
+mprintf("\n ilambda = %.1e A",ilambda);
diff --git a/3740/CH7/EX7.3/Ex7_3.jpg b/3740/CH7/EX7.3/Ex7_3.jpg Binary files differnew file mode 100644 index 000000000..e67c3c393 --- /dev/null +++ b/3740/CH7/EX7.3/Ex7_3.jpg diff --git a/3740/CH7/EX7.3/Ex7_3.sce b/3740/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..41ec9c3a7 --- /dev/null +++ b/3740/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,28 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 7.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+A=1000e-6;//Cathode area in m^2
+Phi=1.25;//Work function of the metal in eV
+kT_by_e=0.025;//constant term =product of Boltzmann constant with Ambient temperature divided by charge of an electron in SI Units
+a=1.2e6;//Constant value for pure metals in A m^-2 K^-2
+T=300;//Temperature in K
+e=1.6e-19;//Electronic charge in C
+Lambda=0.5e-6;//wavelength in m
+eta=0.25;//Dimensionless Quantum efficiency
+h=6.6e-34;//Planck's constant in SI Units
+c=3e8;//Speed of light in air in m/s
+Deltaf=1;//Bandwidth in Hz
+
+iT=a*A*(T^2)*exp(-Phi/kT_by_e);//Thermionic emission current in A
+mprintf("\n iT = %.1e A",iT);//The answer provided in the textbook varies due to roundingoff
+
+Rlambda=eta*e*Lambda/(h*c);//Responsivity of the photomultiplier in A W^-1
+mprintf("\n Rlambda = %.1f A/W",Rlambda);
+
+Wmin=sqrt(2*iT*e*Deltaf)/Rlambda;//Minimum detectable signal power in presence of dark current iT in W
+mprintf("\n Wmin = %.1e W",Wmin);//The answer provided in the textbook varies due to roundingoff
diff --git a/3740/CH7/EX7.4/Ex7_4.jpg b/3740/CH7/EX7.4/Ex7_4.jpg Binary files differnew file mode 100644 index 000000000..26e6570a7 --- /dev/null +++ b/3740/CH7/EX7.4/Ex7_4.jpg diff --git a/3740/CH7/EX7.4/Ex7_4.sce b/3740/CH7/EX7.4/Ex7_4.sce new file mode 100644 index 000000000..d037387d8 --- /dev/null +++ b/3740/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,28 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 7.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+k=1.38e-23;//Boltzmann constant in SI Units
+T=300;//Absolute temperature in K
+R=1e3;//Load resistance in Ohms
+Deltaf=1e3;//Bandwidth of the photo multiplier in Hz
+e=1.6e-19;//Electronic charge in C
+iT=1e-14;//Dark current in A
+
+
+DeltaVj=sqrt(4*k*T*R*Deltaf);
+mprintf("\n DeltaVj = %.1e V",DeltaVj);
+//The answer provided in the textbook is wrong
+
+Deltais=sqrt(2*iT*e*Deltaf);//Corresponding magnitude of rms current fluctuations in A
+mprintf("\n Deltais = %.1e A",Deltais);
+
+//Let the photomultiplier gain be G
+G=1e7;//Given
+//Let the shot noise voltage signal across R be DeltaVj2
+DeltaVj2=Deltais*G*R;
+mprintf("\n DeltaVj2 = %.1e V",DeltaVj2);
diff --git a/3740/CH7/EX7.5/Ex7_5.jpg b/3740/CH7/EX7.5/Ex7_5.jpg Binary files differnew file mode 100644 index 000000000..6a0dcd4b6 --- /dev/null +++ b/3740/CH7/EX7.5/Ex7_5.jpg diff --git a/3740/CH7/EX7.5/Ex7_5.sce b/3740/CH7/EX7.5/Ex7_5.sce new file mode 100644 index 000000000..aa5aa3a9f --- /dev/null +++ b/3740/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,18 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 7.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+h=6.6e-34;//Planck's constant in SI Units
+e=1.6e-19;//Electronic charge in C
+m=9.1e-31;//Rest mass of electron in kg
+me=0.068*m;//Relative mass of electron in conduction band
+n1=1;//Initial state of electron
+n2=2;//Final state of electron
+Lz=10e-9;//Width of the quantum well in m
+
+DeltaE=(h^2)/(8*me)*((n2/Lz)^2-(n1/Lz)^2);//Energy difference between the two states in J
+mprintf("\n DeltaE = %.3f eV",DeltaE/e);//Dividing by 'e' to convert to eV
diff --git a/3740/CH7/EX7.6/Ex7_6.jpg b/3740/CH7/EX7.6/Ex7_6.jpg Binary files differnew file mode 100644 index 000000000..118ce0d0c --- /dev/null +++ b/3740/CH7/EX7.6/Ex7_6.jpg diff --git a/3740/CH7/EX7.6/Ex7_6.sce b/3740/CH7/EX7.6/Ex7_6.sce new file mode 100644 index 000000000..5d4538df3 --- /dev/null +++ b/3740/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 7.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+e=1.6e-19;//Electronic charge in C
+Epsilonr=11.7;//Relative permittivity of medium
+Epsilon0=8.85e-12;//Permittivity of free space in SI Units
+Nd=5e21;//Doping level of the diode in m^-3
+V=100;//Reverse bias voltage in V
+
+xn=sqrt(2*Epsilon0*Epsilonr*V/(e*Nd));//Depletion region thickness in m
+mprintf("\n xn = %.1f um",xn/1e-6);//Dividing by10^(-6) to convert to um
diff --git a/3740/CH7/EX7.7/Ex7_7.jpg b/3740/CH7/EX7.7/Ex7_7.jpg Binary files differnew file mode 100644 index 000000000..133581ea9 --- /dev/null +++ b/3740/CH7/EX7.7/Ex7_7.jpg diff --git a/3740/CH7/EX7.7/Ex7_7.sce b/3740/CH7/EX7.7/Ex7_7.sce new file mode 100644 index 000000000..fb172a980 --- /dev/null +++ b/3740/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,27 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 7.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+A=100e-6*100e-6;//Junction area of the photodiode in m^2
+Epsilonr=12;//Relative permittivity of InGaAs
+Epsilon0=8.84e-12;//Permittivity of free space in SI Units
+w=2e-6;//Thickness of the i region
+Rl=50;//Load resistance in Ohms
+vsat=1e5;//Saturation velocity of electrons in InGaAs
+
+Tdrift=w/vsat;//Transit time of electrons through the depletion region in s
+mprintf("\n Tdrift = %.1e s",Tdrift);
+
+Cj=A*Epsilon0*Epsilonr/w;//Diode capacitance in F
+mprintf("\n Cj = %.1e F",Cj);
+
+Trc=Rl*Cj;//Response time associated with the detector RC network in s
+mprintf("\n Trc = %.1e s",Trc);//The answers vary due to round off error
+
+T=sqrt((Tdrift)^2+(Trc)^2);//Total time response in s
+mprintf("\n T = %.1e s",T);
+//The answers vary due to round off error
diff --git a/3740/CH7/EX7.8/Ex7_8.jpg b/3740/CH7/EX7.8/Ex7_8.jpg Binary files differnew file mode 100644 index 000000000..e88334644 --- /dev/null +++ b/3740/CH7/EX7.8/Ex7_8.jpg diff --git a/3740/CH7/EX7.8/Ex7_8.sce b/3740/CH7/EX7.8/Ex7_8.sce new file mode 100644 index 000000000..659deb1ad --- /dev/null +++ b/3740/CH7/EX7.8/Ex7_8.sce @@ -0,0 +1,13 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 7.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+d=5e-6;//Thickness of Si layer in m
+D=3.4e-3;//Minority carrier diffusion coefficient in m^2 s^-1
+
+Tdiff=(d^2)/(2*D);//Diffusion time of carriers in s
+mprintf("\n Tdiff = %.1e s",Tdiff);
diff --git a/3740/CH8/EX8.1/Ex8_1.sce b/3740/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..749ad4ee1 --- /dev/null +++ b/3740/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.5;//Dimensionless refractive index of glass
+n2=1;//Dimensionless refractive index of air
+Theta_i=60;//Angle of incidence in degrees
+Tan_Sai=sqrt(sind(Theta_i)^2-(n2/n1)^2)/(cosd(Theta_i))//Tan of phase shift in incident and reflected ray
+Sai=atand(Tan_Sai)//phase shift in perpendicular component ofincident and reflected ray in degrees
+delta=atand((n1/n2)^2*Tan_Sai)//phase shift in parallel component of incident and reflected ray in degrees
+
+
+mprintf("\n phase shift in perpendicular component ofincident and reflected ray in degrees Sai= %f",Sai);
+mprintf("\n\n phase shift in parallel component of incident and reflected ray in degrees Delta= %f",delta);
+// the difference in answer is becoause of roundingoff
diff --git a/3740/CH8/EX8.1/Ex_8_1.jpg b/3740/CH8/EX8.1/Ex_8_1.jpg Binary files differnew file mode 100644 index 000000000..792b591dd --- /dev/null +++ b/3740/CH8/EX8.1/Ex_8_1.jpg diff --git a/3740/CH8/EX8.10/Ex8_10.jpg b/3740/CH8/EX8.10/Ex8_10.jpg Binary files differnew file mode 100644 index 000000000..ff97d6339 --- /dev/null +++ b/3740/CH8/EX8.10/Ex8_10.jpg diff --git a/3740/CH8/EX8.10/Ex8_10.sce b/3740/CH8/EX8.10/Ex8_10.sce new file mode 100644 index 000000000..000c5553c --- /dev/null +++ b/3740/CH8/EX8.10/Ex8_10.sce @@ -0,0 +1,28 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.10
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given - Case (i)
+Lambda0=850e-9;//Wavelength in m
+L=1e3;//Length of the silica based fiber in m
+DeltaLambda0=50e-9;//Linewidth of the fiber in m
+c=3e8;//Speed of light in m/s
+//Let the term '((d^2)n)/(dLambda0)^2' in m^-2 be denoted by dsquare
+dsquare=3e10;
+
+DeltaT=L*Lambda0*dsquare*DeltaLambda0/c;//Material dispersion for laser in s
+mprintf("\n DeltaT for laser = %.1e s",DeltaT);//The answers vary due to round off error
+
+//given - Case (ii)
+Lambda0=1550e-9;//Wavelength in m
+L=1e3;//Length of the silica based fiber in m
+DeltaLambda0=3e-9;//Linewidth of the fiber in m
+c=3e8;//Speed of light in m/s
+//Let the term '((d^2)n)/(dLambda0)^2' in m^-2 be denoted by dsquare
+dsquare=4.24e9;
+
+DeltaT=L*Lambda0*dsquare*DeltaLambda0/c;//Material dispersion for LED in s
+mprintf("\n DeltaT for LED = %.1e s",DeltaT);
diff --git a/3740/CH8/EX8.11/Ex8_11.jpg b/3740/CH8/EX8.11/Ex8_11.jpg Binary files differnew file mode 100644 index 000000000..78393b545 --- /dev/null +++ b/3740/CH8/EX8.11/Ex8_11.jpg diff --git a/3740/CH8/EX8.11/Ex8_11.sce b/3740/CH8/EX8.11/Ex8_11.sce new file mode 100644 index 000000000..842b5fa6c --- /dev/null +++ b/3740/CH8/EX8.11/Ex8_11.sce @@ -0,0 +1,38 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.11
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given - Case(i)
+Lambda0=1e-6;//Wavelength in m
+n=1.45;//Dimensionless Refractive index of the fiber
+p=0.286;//Dimensionless Photoelastic coefficient of the fiber
+Beta=7e-11;//Isothermal compressibility of the fiber in m^2 N^-1
+Tf=1400;//Temperature in K
+k=1.38e-23;//Boltzmann constant in SI Units
+L=1e3;//Length of fiber in m
+
+mprintf("\n For Lambda0 = 1um :");
+AlphaR=8*((%pi)^3)/(3*(Lambda0^4))*(n^8)*(p^2)*Beta*k*Tf;//Absorption coefficient due to Rayleigh scattering in m^-1
+mprintf("\n AlphaR = %.2e m^(-1)",AlphaR);
+
+Loss=-10*log10(exp(-AlphaR*L));
+mprintf("\n Loss = %.2f dB km^(-1)\n",Loss);
+
+
+//given - Case(ii)
+Lambda0=1.55e-6;//Wavelength in m
+n=1.46;//Dimensionless Refractive index of the fiber
+p=0.286;//Dimensionless Photoelastic coefficient of the fiber
+Beta=7e-11;//Isothermal compressibility of the fiber in m^2 N^-1
+Tf=1400;//Temperature in K
+L=1e3;//Length of fiber in m
+
+mprintf("\n For Lambda0 = 1.55um :");
+AlphaR=8*((%pi)^3)/(3*(Lambda0^4))*(n^8)*(p^2)*Beta*k*Tf;//Absorption coefficient due to Rayleigh scattering in m^-1
+mprintf("\n AlphaR = %.2e m^(-1)",AlphaR);//The answers vary due to round off error
+
+Loss=-10*log10(exp(-AlphaR*L));
+mprintf("\n Loss = %.2f dB km^(-1)",Loss);//The answers vary due to round off error
diff --git a/3740/CH8/EX8.12/Ex8_12.jpg b/3740/CH8/EX8.12/Ex8_12.jpg Binary files differnew file mode 100644 index 000000000..8b57374fa --- /dev/null +++ b/3740/CH8/EX8.12/Ex8_12.jpg diff --git a/3740/CH8/EX8.12/Ex8_12.sce b/3740/CH8/EX8.12/Ex8_12.sce new file mode 100644 index 000000000..1976844a9 --- /dev/null +++ b/3740/CH8/EX8.12/Ex8_12.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.12
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n0=1;//Dimensionless refractive index of air
+
+Rf=((n1-n0)/(n1+n0))^2;//Fraction of light reflected at each fiber end
+mprintf("\n Rf = %.4f",Rf);
+
+Tf=(1 - Rf)^2;
+mprintf("\n Tf = %.3f",Tf);
+
+L=-10*log10(Tf);//Corresponding total loss in dB
+mprintf("\n L = %.2f dB",L);
diff --git a/3740/CH8/EX8.13/Ex8_13.jpg b/3740/CH8/EX8.13/Ex8_13.jpg Binary files differnew file mode 100644 index 000000000..400fb7ee9 --- /dev/null +++ b/3740/CH8/EX8.13/Ex8_13.jpg diff --git a/3740/CH8/EX8.13/Ex8_13.sce b/3740/CH8/EX8.13/Ex8_13.sce new file mode 100644 index 000000000..4e4eecd57 --- /dev/null +++ b/3740/CH8/EX8.13/Ex8_13.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.13
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+//Let the quantity 'D/2a' be 'D'
+D=0.1;//Dimensionless Ratio of lateral displacement to fiber core radius
+
+Tlat=2/%pi*(acos(D) - D*sqrt(1 - D^2));//Transmission losses from misalignment
+mprintf("\n Tlat = %.3f",Tlat);//The answers vary due to round off error
+
+L=-10*log10(Tlat);//Corresponding Transmission loss in dB
+mprintf("\n L = %.2f dB",L);
diff --git a/3740/CH8/EX8.14/Ex8_14.jpg b/3740/CH8/EX8.14/Ex8_14.jpg Binary files differnew file mode 100644 index 000000000..51c3adb4b --- /dev/null +++ b/3740/CH8/EX8.14/Ex8_14.jpg diff --git a/3740/CH8/EX8.14/Ex8_14.sce b/3740/CH8/EX8.14/Ex8_14.sce new file mode 100644 index 000000000..0cac61476 --- /dev/null +++ b/3740/CH8/EX8.14/Ex8_14.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.14
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+d1=200e-6;//Diameter of core in m
+d2=250e-6;//Diameter of 'core+cladding' in m
+//Let the Diameter of mixing rod be D
+D=3*d2;
+n=7;//Number of input and output fibers in the rod type coupler
+
+//As B is a constant, it will be cancelled from the numerator & the denominator of expression of Lins
+//So the simplified expression for Li becomes:
+Lins=-10*log10((n*%pi*(d1^2)/4)/(%pi*(D^2)/4));//Insertion loss in dB
+mprintf("\n Lins = %.1f dB",Lins);
+
diff --git a/3740/CH8/EX8.2/Ex8_2.jpg b/3740/CH8/EX8.2/Ex8_2.jpg Binary files differnew file mode 100644 index 000000000..30b4147de --- /dev/null +++ b/3740/CH8/EX8.2/Ex8_2.jpg diff --git a/3740/CH8/EX8.2/Ex8_2.sce b/3740/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..389533bd9 --- /dev/null +++ b/3740/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of core
+n2=1.46;//Dimensionless refractive index of cladding
+d=100e-6;//Width of the waveguide in m
+Lambda0=1e-6;//Vacuum wavelength in m
+
+V=%pi*(d/Lambda0)*sqrt((n1^2)-(n2^2));//Dimensionless normalized film thickness
+mprintf("\n V = %.1f",V);
+
+//Let the total number of possible modes be 'N'
+N=2*(1 + floor(2*V/%pi));
+mprintf("\n N = %d",N);
diff --git a/3740/CH8/EX8.3/Ex8_3.jpg b/3740/CH8/EX8.3/Ex8_3.jpg Binary files differnew file mode 100644 index 000000000..6dd1d5e3a --- /dev/null +++ b/3740/CH8/EX8.3/Ex8_3.jpg diff --git a/3740/CH8/EX8.3/Ex8_3.sce b/3740/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..602c05e1b --- /dev/null +++ b/3740/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+Lambda0=1e-6;//Wavelength in m
+
+//For single mode guide, let the core thickness be less than dmax
+dmax=Lambda0/(2*sqrt(n1^2 - n2^2));
+mprintf("\n d < %.2f um",dmax/1e-6);//Dividing by 10^(-6) to convert to um
diff --git a/3740/CH8/EX8.4/Ex8_4.jpg b/3740/CH8/EX8.4/Ex8_4.jpg Binary files differnew file mode 100644 index 000000000..38d655a9c --- /dev/null +++ b/3740/CH8/EX8.4/Ex8_4.jpg diff --git a/3740/CH8/EX8.4/Ex8_4.sce b/3740/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..ab450b7a8 --- /dev/null +++ b/3740/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+n0=1;//Dimensionless refractive index of air
+a=100e-6;//Core radius in m
+Lambda0=900e-9;//Vacuum wavelength in m
+
+V=2*%pi*(a/Lambda0)*sqrt((n1^2)-(n2^2));//Dimensionless normalized film thickness
+mprintf("\n V = %.1f",V);
+
+N=(V^2)/2;//Number of modes of propagation
+mprintf("\n N = %d",N);
diff --git a/3740/CH8/EX8.5/Ex8_5.jpg b/3740/CH8/EX8.5/Ex8_5.jpg Binary files differnew file mode 100644 index 000000000..d0d7cf76e --- /dev/null +++ b/3740/CH8/EX8.5/Ex8_5.jpg diff --git a/3740/CH8/EX8.5/Ex8_5.sce b/3740/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..e957aa04a --- /dev/null +++ b/3740/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,23 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+n0=1;//Dimensionless refractive index of air
+
+Thetac=asind(n2/n1);//critical angle in degrees
+mprintf("\n Thetac = %.1f degrees",Thetac);//The answers vary due to round off error
+
+Delta=(n1-n2)/n1;
+mprintf("\n Delta = %.4f",Delta);//The answers vary due to round off error
+
+NA=n1*sqrt(2*Delta);//Dimensionless Numerical aperture of fiber
+mprintf("\n NA = %.3f",NA);//The answers vary due to round off error
+
+AlphaMax=asind(NA);//Fiber acceptance angle in degrees
+mprintf("\n AlphaMax = %.1f degrees",AlphaMax);//The answers vary due to round off error
diff --git a/3740/CH8/EX8.6/Ex8_6.jpg b/3740/CH8/EX8.6/Ex8_6.jpg Binary files differnew file mode 100644 index 000000000..129dbca35 --- /dev/null +++ b/3740/CH8/EX8.6/Ex8_6.jpg diff --git a/3740/CH8/EX8.6/Ex8_6.sce b/3740/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..4dd2e8136 --- /dev/null +++ b/3740/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+L=1e3;//Length of fiber in m
+c=3e8;//Speed of light in vacuum in m/s
+
+DeltaTSI=L/c*(n1/n2)*(n1-n2);//Intermodal dispersion in s
+mprintf("\n DeltaTSI = %.2f ns",DeltaTSI/1e-9);//Dividing by 10^(-9) to convert to ns
+//The answers vary due to round off error
diff --git a/3740/CH8/EX8.7/Ex8_7.jpg b/3740/CH8/EX8.7/Ex8_7.jpg Binary files differnew file mode 100644 index 000000000..dfc90e619 --- /dev/null +++ b/3740/CH8/EX8.7/Ex8_7.jpg diff --git a/3740/CH8/EX8.7/Ex8_7.sce b/3740/CH8/EX8.7/Ex8_7.sce new file mode 100644 index 000000000..5993b9078 --- /dev/null +++ b/3740/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+L=1e3;//Length of fiber in m
+c=3e8;//Speed of light in vacuum in m/s
+
+Delta=(n1^2 - n2^2)/(2* n1^2);
+mprintf("\n Delta = %.4f",Delta);
+
+DeltaTGI=L/c*Delta/8;//Intermodal dispersion in s
+mprintf("\n DeltaTGI = %.2e s",DeltaTGI);
+//The answers vary due to round off error
diff --git a/3740/CH8/EX8.8/Ex8_8.jpg b/3740/CH8/EX8.8/Ex8_8.jpg Binary files differnew file mode 100644 index 000000000..e235f6a8e --- /dev/null +++ b/3740/CH8/EX8.8/Ex8_8.jpg diff --git a/3740/CH8/EX8.8/Ex8_8.sce b/3740/CH8/EX8.8/Ex8_8.sce new file mode 100644 index 000000000..2396d5986 --- /dev/null +++ b/3740/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+Lambda0=1.5e-6;//Wavelength in m
+
+//Let the maximum core radius in m for single mode operation be 'amax'
+amax=2.405*Lambda0/(2*%pi*sqrt((n1^2)-(n2^2)));
+mprintf("\n a < %.2f um",amax/1e-6);//Dividing by 10^(-6) to convert into um
diff --git a/3740/CH8/EX8.9/Ex8_9.sce b/3740/CH8/EX8.9/Ex8_9.sce new file mode 100644 index 000000000..ac808e425 --- /dev/null +++ b/3740/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,31 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.9
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given - Case (i)
+k=1.38e-23//boltzman constant
+Lambda0=1e-6;//Wavelength in m
+n=1.46;//Dimensionless refractive index of core
+p=0.286;//photelastic coefficient
+Beta=7e-11//isothermal compressibility at T_F which is fictive temperature in m^2N^-1
+T_F=1400//fictive temperature in K
+alpha_r=8*(%pi^3)*(n^8)*p^2*Beta*k*T_F/(3*Lambda0^4)//absorption coefficient in per Km
+L=1e3//length in m
+Loss=-10*log10(exp(-alpha_r*L))//loss in dB Km^-1
+mprintf("\n absorption coefficient =%fx10^-4 m^-1\n Loss in dB Km^-1= %f dB Km^-1",alpha_r*1e4,Loss);//multiplication by 1e4 to just represent the answer in proper form
+//The answers vary due to round off error
+
+//given - Case (ii)
+Lambda0=1550e-9;//Wavelength in m
+n=1.46;//Dimensionless refractive index of core
+p=0.286;//photelastic coefficient
+Beta=7e-11//isothermal compressibility at T_F which is fictive temperature in m^2N^-1
+T_F=1400//fictive temperature in K
+alpha_r=8*(%pi^3)*(n^8)*p^2*Beta*k*T_F/(3*Lambda0^4)//absorption coefficient in per Km
+L=1e3//length in m
+Loss=-10*log10(exp(-alpha_r*L))//loss in dB Km^-1
+mprintf("\n absorption coefficient =%fx10^-5 m^-1\n Loss in dB Km^-1= %f dB Km^-1",alpha_r*1e5,Loss);//multiplication by 1e5 to just represent the answer in proper form
+//The answers vary due to round off error
diff --git a/3740/CH8/EX8.9/Ex_8_9.jpg b/3740/CH8/EX8.9/Ex_8_9.jpg Binary files differnew file mode 100644 index 000000000..5026db102 --- /dev/null +++ b/3740/CH8/EX8.9/Ex_8_9.jpg diff --git a/3740/CH9/EX9.1/Ex9_1.jpg b/3740/CH9/EX9.1/Ex9_1.jpg Binary files differnew file mode 100644 index 000000000..6050ee31e --- /dev/null +++ b/3740/CH9/EX9.1/Ex9_1.jpg diff --git a/3740/CH9/EX9.1/Ex9_1.sce b/3740/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..ceb977e24 --- /dev/null +++ b/3740/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,35 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 9.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+eta=0.6;//Dimensionless Quantum Efficiency of photodiode
+Lambda0=1.3e-6;//Wavelength in m
+e=1.6e-19;//Electronic charge in C
+P=10e-6;//Optical power in W
+h=6.6e-34;//Planck's constant in SI Units
+c=3e8;//Speed of light in m/s
+iD=3e-9;//Reverse bias leakage current in A
+Deltaf=500e6;//Bandwidth of system in Hz
+k=1.38e-23;//Boltzmann constant in SI Units
+Rl=50;//Load resistor in Ohms
+T=300;//Absolute temperature in K
+Fn=1;//Assumption
+
+iLambda=eta*P*e*Lambda0/(h*c);//Corresponding photogenerated current in A
+mprintf("\n iLambda = %.2f uA",iLambda/1e-6);//Dividing by 10^(-6) to convert to uA
+//The answers vary due to round off error
+
+//Let the total shot noise be Ishot
+Ishot=sqrt(2*(iLambda+iD)*e*Deltaf);
+mprintf("\n Ishot = %.1f nA",Ishot/1e-9);//Dividing by 10^(-9) to convert to nA
+
+DeltaiJ=sqrt(4*k*T*Fn*Rl*Deltaf)/Rl;//Corresponding Johnson noise in A
+mprintf("\n DeltaiJ = %.2f nA",DeltaiJ/1e-9);//Dividing by 10^(-9) to convert to nA
+//The answers vary due to round off error
+
+SNR=(iLambda^2)/(Ishot^2 + DeltaiJ^2);//Corresponding Dimensionless Signal to Noise Ratio
+mprintf("\n (S/N) = %.2f",SNR);//The answers vary due to round off error
diff --git a/3740/CH9/EX9.2/Ex9_2.jpg b/3740/CH9/EX9.2/Ex9_2.jpg Binary files differnew file mode 100644 index 000000000..fbb52fd3d --- /dev/null +++ b/3740/CH9/EX9.2/Ex9_2.jpg diff --git a/3740/CH9/EX9.2/Ex9_2.sce b/3740/CH9/EX9.2/Ex9_2.sce new file mode 100644 index 000000000..35b044b45 --- /dev/null +++ b/3740/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,26 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 9.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+L=15;//Length of link in km
+Deltaf=100e6;//Bandwidth in b/s
+Pmin=-50;//Receiver sensitivity in dBm is the minimum power received by receiver
+alphat=2;//Fiber transmission loss in dB/km
+Ns=10;//Number of splices contributing to loss
+Ls=0.5;//Loss of each splice in dB
+Lc=1;//Detector coupling loss in dB
+La=5;//Additional Losses due to various factors in dB;
+//Let the transmitter launch power in dBm be 'P'
+P=0;
+
+Margin=P-Pmin;//Power Margin in dBm
+mprintf("\n Margin = %d dBm",Margin);
+
+//Let the total system loss in dB be 'Lt'
+Lt=alphat*L+Lc+Ns*Ls+La;
+mprintf("\n Total System Loss = %d dB",Lt);
+mprintf("\n Excess power margin = %d dB",Margin-Lt);//Excess power margin in dB
diff --git a/3740/CH9/EX9.3/Ex9_3.jpg b/3740/CH9/EX9.3/Ex9_3.jpg Binary files differnew file mode 100644 index 000000000..047e94b59 --- /dev/null +++ b/3740/CH9/EX9.3/Ex9_3.jpg diff --git a/3740/CH9/EX9.3/Ex9_3.sce b/3740/CH9/EX9.3/Ex9_3.sce new file mode 100644 index 000000000..068dee910 --- /dev/null +++ b/3740/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 9.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+Lambda0=0.63e-6;//Wavelength in m
+Deltan=6e-3;//Dimensionless Change in refractive index of titanium
+n1=2.286;//Ordinary dimensionless refractive index of Titanium
+
+n2=n1-Deltan;//Changed dimensionless refractive index of titanium
+NA=sqrt(n1^2 - n2^2);//Corresponding dimensionless numerical aperture
+mprintf("\n NA = %.3f",NA);
|