summaryrefslogtreecommitdiff
path: root/3739/CH4
diff options
context:
space:
mode:
Diffstat (limited to '3739/CH4')
-rw-r--r--3739/CH4/EX4.1/EX4_1.sce24
-rw-r--r--3739/CH4/EX4.10/EX4_10.sce18
-rw-r--r--3739/CH4/EX4.11/EX4_11.sce19
-rw-r--r--3739/CH4/EX4.2/EX4_2.sce12
-rw-r--r--3739/CH4/EX4.3/EX4_3.sce10
-rw-r--r--3739/CH4/EX4.4/EX4_4.sce16
-rw-r--r--3739/CH4/EX4.5/EX4_5.sce18
-rw-r--r--3739/CH4/EX4.6/EX4_6.sce28
-rw-r--r--3739/CH4/EX4.7/EX4_7.sce16
-rw-r--r--3739/CH4/EX4.8/EX4_8.sce16
-rw-r--r--3739/CH4/EX4.9/EX4_9.sce29
11 files changed, 206 insertions, 0 deletions
diff --git a/3739/CH4/EX4.1/EX4_1.sce b/3739/CH4/EX4.1/EX4_1.sce
new file mode 100644
index 000000000..322ca6a1f
--- /dev/null
+++ b/3739/CH4/EX4.1/EX4_1.sce
@@ -0,0 +1,24 @@
+//Chapter 4, Example 4.1, page 130
+clc
+
+//Initialisation
+h=400 //height in Km
+pd=1*10**8 //plasma density at height D
+pe=1*10**10 //plasma density at height E
+pf=3*10**11 //plasma density at height F
+Wd=20*10**3 //thickness of D
+We=40*10**3 //thickness of E
+Wf=190*10**3 //thickness of F
+
+//Calculation
+tecd=Wd*pd //total electron content at D
+tece=We*pe //total electron content at E
+tecf=Wf*pf //total electron content at F
+tec=tecd+tece+tecf
+tec1=tec*sqrt(2) //total electron content
+
+//Results
+printf("(2) TEC (D) = %.1f x 10^12 el/m^2",(tecd/10**12))
+printf("\n TEC (E) = %.1f x 10^14 el/m^2",(tece/10**14))
+printf("\n TEC (F) = %.2f x 10^16 el/m^2",(tecf*10**-16))
+printf("\n(3) TEC = %.1f x 10^16 el/m^2",(tec1/10**16))
diff --git a/3739/CH4/EX4.10/EX4_10.sce b/3739/CH4/EX4.10/EX4_10.sce
new file mode 100644
index 000000000..e7066bb51
--- /dev/null
+++ b/3739/CH4/EX4.10/EX4_10.sce
@@ -0,0 +1,18 @@
+//Chapter 4, Example 4.10, page 159
+clc
+
+//Initialisation
+g=50 //geomagnetic latitude in degree
+R12=100 //solar activity number
+pi=3.14
+x=60*pi/180 //zenith angle in radians
+
+//Calculation
+f0=4.35+0.0058*g-0.00012*g**2
+f100=5.35+0.011*g-0.00023*g**2
+fs=f0+0.01*(f100-f0)*R12
+n=0.093+(0.00461*g)-(0.000054*(g**2))+(0.0031*R12) //The answer provided in the textbook is wrong
+F1=fs*(cos(x))**n //critical frequency
+
+//Results
+printf("Critical Frequency = %.2f MHz",F1) //The answer provided in the textbook is wrong
diff --git a/3739/CH4/EX4.11/EX4_11.sce b/3739/CH4/EX4.11/EX4_11.sce
new file mode 100644
index 000000000..0876c9e5e
--- /dev/null
+++ b/3739/CH4/EX4.11/EX4_11.sce
@@ -0,0 +1,19 @@
+//Chapter 4, Example 4.11, page 164
+clc
+//Initialisation
+R12=150 //12 month average value
+fs0=4.416
+fs100=5.473
+n=0.23
+pi=3.14
+x=45*pi/180 //zenith angle in radians
+
+//Calculation
+f1=63.7+0.728*R12+0.00089*R12**2
+fs=fs0+0.01*(fs100-fs0)*R12
+F1=fs*(cos(x))**n //critical frequency
+
+//Results
+printf("(1) R12 = %d",R12)
+printf("\n(2) F12 = %d",f1)
+printf("\n(3) f0F1 = %.2f MHz",F1)
diff --git a/3739/CH4/EX4.2/EX4_2.sce b/3739/CH4/EX4.2/EX4_2.sce
new file mode 100644
index 000000000..41e3dee7a
--- /dev/null
+++ b/3739/CH4/EX4.2/EX4_2.sce
@@ -0,0 +1,12 @@
+//Chapter 4, Example 4.2, page 134
+clc
+
+//Initialisation
+N=5*10**11 //Electron density in F layer
+
+//Calculation
+F=9*sqrt(N) //f0F frequency
+
+//Results
+printf("(1) hmin = 200Km hmax = 400Km") //from graph
+printf("\n(2) F = %.1f Mhz",(F*10**-6))
diff --git a/3739/CH4/EX4.3/EX4_3.sce b/3739/CH4/EX4.3/EX4_3.sce
new file mode 100644
index 000000000..ee85b53ca
--- /dev/null
+++ b/3739/CH4/EX4.3/EX4_3.sce
@@ -0,0 +1,10 @@
+//Chapter 4, Example 4.3, page 136
+clc
+//Initialisation
+fc=6.3*10**6 //frequency in hertz
+
+//Calculation
+f=fc*sqrt(2) //maximum usable frequency
+
+//Results
+printf("Maximum usable frequency = %.3f MHz",(f*10**-6))
diff --git a/3739/CH4/EX4.4/EX4_4.sce b/3739/CH4/EX4.4/EX4_4.sce
new file mode 100644
index 000000000..5c78aba58
--- /dev/null
+++ b/3739/CH4/EX4.4/EX4_4.sce
@@ -0,0 +1,16 @@
+//Chapter 4, Example 4.4, page 137
+clc
+//Initialisation
+tec=10**17 //total electron content
+H=200*10**3 //thickness of F layer
+
+//Calculation
+pd=tec/H //plasma density at F
+fc=9*sqrt(pd)
+ouf=3.6*fc*0.8 //optimum usable frequency
+muf=fc*1.788 //maximum usable frequency
+
+//Results
+printf("Maximum usable frequency = %.1f MHz",(fc*10**-6))
+printf("\nOptimum usable frequency < %.3f MHz",(ouf*10**-6))
+printf("\nMaximum usable frequency (30) = %.1f MHz",(muf*10**-6))
diff --git a/3739/CH4/EX4.5/EX4_5.sce b/3739/CH4/EX4.5/EX4_5.sce
new file mode 100644
index 000000000..934d03979
--- /dev/null
+++ b/3739/CH4/EX4.5/EX4_5.sce
@@ -0,0 +1,18 @@
+//Chapter 4, Example 4.5, page 138
+clc
+//Initialisation
+d=1000 //distance in km
+re=6370 //earth radius in km
+dt=30 //in degree
+pi=3.14
+
+//Calculation
+teta=d*(2*re)**-1 //theta in radians
+tet=teta*180*pi**-1 //theta in degree
+w1=90-dt-tet
+a=sin(w1*3.14/180)/re
+a1=sin((90+dt)*3.14/180)
+h=(a1*a**-1)-re //height
+
+//Results
+printf("(1) virtual height of the reflection point = %d km",h) //The answer provided in the textbook is wrong
diff --git a/3739/CH4/EX4.6/EX4_6.sce b/3739/CH4/EX4.6/EX4_6.sce
new file mode 100644
index 000000000..9016ea092
--- /dev/null
+++ b/3739/CH4/EX4.6/EX4_6.sce
@@ -0,0 +1,28 @@
+//Chapter 4, Example 4.6, page 142
+clc
+
+//Initialisation
+d=200 //height in Km
+f=700 //frequency in Khz
+
+//Calculation
+T1e=0.4 //from graph 4.10
+T2e=0.9
+T3e=1.7
+T1f=1.3
+T2f=2.8
+T3f=4.3
+Tef=0.3
+Tef1=2.7
+Tef2=0.5
+
+//Results
+printf("(1) Time delay of E layer, Td(1E) = %.1f ms",T1e)
+printf("\n Td(2E) = %.1f ms",T2e)
+printf("\n Td(2E) = %.1f ms",T3e)
+printf("\n Time delay of F layer, Td(1F) = %.1f ms",T1f)
+printf("\n Td(2F) = %.1f ms",T2f)
+printf("\n Td(2F) = %.1f ms",T3f)
+printf("\n(2) Time delay of E and F for a distance of 500 km, Td(E,F) = %.1f ms",Tef)
+printf("\n(3) Td(1F,3F) = %.1f ms",Tef1)
+printf("\n Td(1E,3E) = %.1f ms",Tef2)
diff --git a/3739/CH4/EX4.7/EX4_7.sce b/3739/CH4/EX4.7/EX4_7.sce
new file mode 100644
index 000000000..2ec933e0e
--- /dev/null
+++ b/3739/CH4/EX4.7/EX4_7.sce
@@ -0,0 +1,16 @@
+//Chapter 4, Example 4.7, page 147
+clc
+//Initialisation
+f=1.5*10**9 //frequency in Hz
+tec=10**18 //total electron content
+g=5*10**-3 //geomagnetic field intensity
+a=3.36*10**2
+
+//Calculation
+teta= a*g*tec*(f**-2) //Faraday rotation in Radian
+c=0.8422
+x=20*log10(c) //loss value in dB
+
+//Results
+printf("(1) Faraday rotation = %.1f Rad",teta)
+printf("\n(2) Loss = %f dB",x)
diff --git a/3739/CH4/EX4.8/EX4_8.sce b/3739/CH4/EX4.8/EX4_8.sce
new file mode 100644
index 000000000..d2c760f80
--- /dev/null
+++ b/3739/CH4/EX4.8/EX4_8.sce
@@ -0,0 +1,16 @@
+//Chapter 4, Example 4.8, page 149
+clc
+//Initialisation
+tec1=10**18 //total electron content
+f=1.5 //frequency in Hertz
+tec2= 10**17 //total electron content
+
+//Calculation
+teta = 600 //Faraday rotation in mRadian
+T=5 //time delay in ns
+gd=0.5 //time delay difference in ns
+
+//Results
+printf("(1) Faraday rotation = %d mRad",teta)
+printf("\n(2) Time delay = %d ns",T)
+printf("\n(3) G/D = %.1f ns",gd)
diff --git a/3739/CH4/EX4.9/EX4_9.sce b/3739/CH4/EX4.9/EX4_9.sce
new file mode 100644
index 000000000..d97e33033
--- /dev/null
+++ b/3739/CH4/EX4.9/EX4_9.sce
@@ -0,0 +1,29 @@
+//Chapter 4, Example 4.9, page 158
+clc
+
+//Initialisation
+phi=166 //in radian
+pi=3.14
+t=35*pi/180 //geographic latitude in radian
+t1=60*pi/180 //zenith angle in radian
+N=80*pi/180 //in radian
+x=92
+y=35
+h=35
+p=1.2
+
+
+
+//Calculation
+m=0.11-0.49*cos(t)
+fe=0.004*(1+0.021*166)**2 //minimum value of f0E
+A=1+0.0094*(phi-66) //A value
+B=(cos(N))
+B1=B**m //B value
+C=x+y*cos(t) //C value
+D=cos(t1)**p //D value
+F=(A*B*C*D)**(0.25) //exact value of f0E
+
+//Results
+printf("(1) Minimum value of f0E = %.2f x 10^-2 MHz",(fe*100))
+printf("\n(2) f0E = %.2f MHz",F) //The answer provided in the textbook is wrong