summaryrefslogtreecommitdiff
path: root/3733/CH14/EX14.3/Ex14_3.sce
diff options
context:
space:
mode:
Diffstat (limited to '3733/CH14/EX14.3/Ex14_3.sce')
-rw-r--r--3733/CH14/EX14.3/Ex14_3.sce41
1 files changed, 41 insertions, 0 deletions
diff --git a/3733/CH14/EX14.3/Ex14_3.sce b/3733/CH14/EX14.3/Ex14_3.sce
new file mode 100644
index 000000000..c0e577baa
--- /dev/null
+++ b/3733/CH14/EX14.3/Ex14_3.sce
@@ -0,0 +1,41 @@
+// Example 14_3
+clc;funcprot(0);
+//Given data
+T_1=170;// °C
+P_1=140;// bar
+m_w=600;// The flow rate in the economiser in kg/sec
+m_g=1250;// The flow rate of hot gases in kg/sec
+T_go=450;// °C
+v_g=12;// m/s
+V_w=1.2;//The optimum velocity of water in m/s
+d_o=70;// mm
+d_i=60;// mm
+C_pg=1.12;// kJ/kg°C
+P_v=8;// The vertical pitch of the coil in cm
+C=5;// Clearance in mm
+B=4.8;// Duct width in m
+// (LMTD)_cross=(LMTD)_counter*1.12;
+C_pw=4.2;// kJ/kg.°C
+m=1;// kg
+U_o=80;// Over all heat transfer coefficient in W/m^2°C
+
+//Calculation
+//From steam tables,at p=140 bar
+T_s=336.75;// °C
+h_f1=1571.2;// kJ/kg
+v_w=0.00161;// m^3/kg
+//At 170°C,
+h_f2=m*C_pw*(T_1-0);// kJ/kg
+Q=m_w*(h_f1-h_f2);// kJ/sec
+T_gi=T_go+(Q/(C_pg*m_g));//°C
+Theta_i=(T_gi-T_s);// °C
+Theta_o=(T_go-T_1);// °C
+LMTD_counter=(Theta_i-Theta_o)/(log(Theta_i/Theta_o));// Logrithemic mean temperature difference in °C
+LMTD_cross=LMTD_counter*1.12;// °C
+A_s=(Q*10^3)/(U_o*LMTD_cross);// m^2
+n=m_w/(((%pi/4)*(d_i/1000)^2*(V_w/v_w)));
+L=(A_s/(%pi*(d_o/1000)*n));// meters
+N=L/(B-(2*C/100));// The number of the turns of the coil
+printf('\nLength,L=%0.0f meters \nThe number of the turns of the coil=%0.0f',L,N);
+// The answer provided in the textbook is wrong
+