summaryrefslogtreecommitdiff
path: root/3731/CH6/EX6.8/Ex6_8.sce
diff options
context:
space:
mode:
Diffstat (limited to '3731/CH6/EX6.8/Ex6_8.sce')
-rw-r--r--3731/CH6/EX6.8/Ex6_8.sce69
1 files changed, 69 insertions, 0 deletions
diff --git a/3731/CH6/EX6.8/Ex6_8.sce b/3731/CH6/EX6.8/Ex6_8.sce
new file mode 100644
index 000000000..0499ed6ab
--- /dev/null
+++ b/3731/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,69 @@
+//Chapter 6:Induction Motor Drives
+//Example 8
+clc;
+
+//Variable Initialization
+
+//Ratings of the delta connected Induction motor
+f=50 // frequency in HZ
+Vl=400 // line voltage in V
+P=4 // number of poles
+Pm=2.8*1000 // rated mechanical power developed in W
+N=1370 // rated speed in rpm
+
+//Parameters referred to the stator
+Xr_=5 // rotor winding reactance in ohm
+Xs=Xr_ // stator winding reactance in ohm
+Rr_=5 // resistance of the rotor windings in ohm
+Rs=2 // resistance of the stator windings in ohm
+Xm=80 // no load reactance in ohm
+
+//Solution
+Ns=120*f/P //synchronous speed in rpm
+Wms=2*%pi*Ns/60 //synchronous speed in rad/s
+s=(Ns-N)/Ns //full load slip
+x=(Rs+Rr_/s)**2+(Xs+Xr_)**2 //total impedance
+T=(3/Wms)*(Vl**2*Rr_/s)/x //full load torque
+Tl=T
+K=Tl/(1-s)**2 //since Tl=K*(1-s)**2
+
+//(i) When the motor is running at 1200 rpm
+N1=1200 //speed in rpm
+s1=(Ns-N1)/Ns //slip at the given speed N1
+Tl=K*(1-s1)**2 //torque at the given speed N1
+
+y=(Rs+Rr_/s1)**2+(Xs+Xr_)**2 //total impedance
+a=Tl*(Wms/3)*y*(s1/Rr_) //Since T=(3/Wms)*(Vl**2*Rr_/s)/x and a=V**2
+V=sqrt(a) //required voltage at the given speed N1
+Ir_=V/((Rs+Rr_/s1)+%i*(Xs+Xr_))//rotor current
+Im=V/(%i*Xm) //magnetizing current
+Is=Ir_+Im //total current
+Il=abs(Is)*sqrt(3) //line current
+
+//(ii)When the terminal voltage is 300 V
+V1=300 //terminal voltage in V
+x=(Rs+Rr_)**2+(Xs+Xr_)**2
+T=(3/Wms)*(V1**2*Rr_)/x
+
+//Now we have to solve for the value of slip 's' from the given equation 104s**4- 188s**3 + 89s**2 - 179s + 25=0"
+coeff = [104,-188,89,-179,25] //coeffcient of the polynomial equation
+s=[]
+s=roots(coeff) //roots of the polynomial equation
+
+T=K*(1-real(s(4)))**2 //torque at the given terminal voltage of 300 V
+N=Ns*(1-real(s(4))) //speed at the given terminal voltage of 300 V
+Ir_=V1/((Rs+Rr_/real(s(4)))+%i*(Xs+Xr_))//rotor current
+Im=V1/(%i*Xm) //magnetizing current
+Is=Ir_+Im //total current
+Il1=abs(Is)*sqrt(3) //line current
+
+
+//Results
+mprintf("(i)Required torque is Tl:%.1f N-m",Tl)
+mprintf("\nRequired motor terminal voltage is V: %.1f V",V)
+mprintf("\nRequired line current is Il:%.2f A",Il)
+mprintf("\n(ii)The roots of the polynomial equation are s1:%.3f s2:%.3f s3:%.3f s4:%.3f",real(s(1)),real(s(2)),real(s(3)),real(s(4)))
+mprintf("\nHence Only s4: %.3f is valid",real(s(4)))
+mprintf("\nRequired torque is Tl:%.2f N-m",T)
+mprintf("\nRequired speed is N:%.1f rpm",N)
+mprintf("\nRequired line current is Il:%.2f A",Il1)