diff options
Diffstat (limited to '3731/CH5/EX5.9/Ex5_9.sce')
-rw-r--r-- | 3731/CH5/EX5.9/Ex5_9.sce | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/3731/CH5/EX5.9/Ex5_9.sce b/3731/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..d98a78d64 --- /dev/null +++ b/3731/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,79 @@ +//Chapter 5:Dc Motor Drives +//Example 9 +clc; + +//Variable Initialization + +//Ratings of the separately excited motor which operates under rheostatic braking +V=220 // rated voltage in V +N=1000 // rated speed in rpm +Ia=175 // rated current in A +Ra=0.08 // armature resistance in ohms +N1=1050 // initial speed of the motor in rpm +J=8 // moment of inertia of the motor load system kg-m2 +La=0.12 // armature curcuit inductance in H + +//Solution +E=V-Ia*Ra +Wm=N*2*%pi/60 //rated speed in rad/s + +//(a)When the braking current is twice the rated current +Ia1=2*Ia +E1=N1/N*E +x=E1/Ia1 //x=Rb+Ra +Rb=x-Ra //required braking resistance + +//(b)To obtain the expression for the transient value of speed and current including the effect of armature inductance +Ra=x //total armature current +K1=N1*2*%pi/60 //initial speed in rad/s +K=E/Wm +B=0 +ta=La/Ra //time constant in sec +Trated=E*Ia/Wm //rated torque +Tl=0.15*Trated //load torque is 15% of the rated torque +tm1= %inf //tm1=J/B and B=0 which is equal to infinity +tm2=J*Ra/(B*Ra+K**2) + +a = ta +b = -(1+ta/tm1) +c = 1/tm2 + +//Discriminant +d = (b**2) - (4*a*c) + +alpha1 = (-b-sqrt(d))/(2*a) +alpha2 = (-b+sqrt(d))/(2*a) + +K3=tm2*Tl/J +K4=tm2*K*Tl/J/Ra + +//Transient value for speed +x1=((J*alpha2-B)*K1-(Tl-J*alpha2*K3))/(J*(alpha2-alpha1)) +y1=((J*alpha1-B)*K1-(Tl-J*alpha1*K3))/(J*(alpha1-alpha2)) + +//Transient value for the current +x2=(K*K1+alpha2*La*K4)/(La*(alpha2-alpha1)) +y2=(K*K1+alpha1*La*K4)/(La*(alpha1-alpha2)) + + +//(c) To calculate the time taken by braking operation and the maximum value of the armature current +//now Wm=0 for the braking operation and hence 151.5 exp(-0.963*t1)- 8.247 = 0 from the previous answer in (b) +a=K3/x1 //a=exp(-0.963*t1) +t1=-alpha1*log(real(a)) //take log base e on both sides +//now d/dt(ia)=0 for themaximum current and hence d/dt(26.25-593.1exp(-0.963*t)+566.8exp(-4.19*t) = 0 from the previous answer in (b) +b=abs(alpha2*y2)/abs(alpha1*x2) //b=exp(-0.963*t)/exp(-4.19*t) +t2=log(b)/(-alpha1+alpha2) //take log base e on both sides +t2=abs(t2) +ia=K4-real(x2)*exp(real(-alpha1)*t2)-real(y2)*exp(real(-alpha2)*t2) + + +//Results +mprintf("(a)Hence the braking resistance is :%.3f ohm",Rb) +mprintf("\nb)The value of alpha1 :%.3f and alpha2 :%.3f ",real(alpha1),real(alpha2)) +mprintf("\nHence the expression for the transient value for the speed is") +mprintf("\nWm=%.1f exp( -%.3f *t)%.1f exp( -%.2f *t) - %.3f",real(x1),real(alpha1),real(y1),real(alpha2),K3) +mprintf("\nHence the expression for the transient value for the current is") +mprintf("\nia=%.2f -%.1f exp(-%.3f*t) +%.1f exp(%.2f*t)",K4,real(x2),real(alpha1),-real(y2),-real(alpha2)) +mprintf("\n(c)Hence the time taken is :%.2f sec",t2) +mprintf("\nHence the maximum current is:%.2f A",ia) +//There is a slight difference in the answers because of rounding |