diff options
Diffstat (limited to '3720/CH7')
-rw-r--r-- | 3720/CH7/EX7.10/Ex7_10.sce | 37 | ||||
-rw-r--r-- | 3720/CH7/EX7.11/Ex7_11.sce | 12 | ||||
-rw-r--r-- | 3720/CH7/EX7.4/Ex7_4.sce | 20 | ||||
-rw-r--r-- | 3720/CH7/EX7.5/Ex7_5.sce | 18 | ||||
-rw-r--r-- | 3720/CH7/EX7.6/Ex7_6.sce | 20 |
5 files changed, 107 insertions, 0 deletions
diff --git a/3720/CH7/EX7.10/Ex7_10.sce b/3720/CH7/EX7.10/Ex7_10.sce new file mode 100644 index 000000000..f8e449a92 --- /dev/null +++ b/3720/CH7/EX7.10/Ex7_10.sce @@ -0,0 +1,37 @@ +//Example 7_10
+clc;clear;
+// Given values
+L_m=0.991;// Length of the model truck in m
+h_m=0.257;// Height of the model truck in m
+w_m=0.159;// Width of the model truck in m
+V_p=26.8;// Velocity of the prototype in m/s
+T=25;// °C
+C=16;// Geometric ratio
+
+// Properties
+//For air at atmospheric pressure and at T=25°C,
+rho_m=1.184;// Density of air in kg/m^3
+mu_m=1.849*10^-5;// Viscosity of air in kg/m.s
+
+// Calculation
+// From table 7.7,
+V_m=[20 25 30 35 40 45 50 55 60 65 70];// Velocity of the model truck in m/s
+F_D=[12.4 19.0 22.1 29.0 34.3 39.9 47.2 55.5 66.0 77.6 89.9];// Drag force of the model truck in N
+for(i=1:11)
+ A_m=w_m*h_m;// Area of the model truck in m^2
+ C_Dm(i)=(F_D(i))/((1/2)*rho_m*(V_m(i))^2*A_m);// Drag coefficient
+ Re_m(i)=(rho_m*V_m(i)*w_m)/(mu_m);// Reynolds number of the model truck
+end
+xlabel('Re*10^-5');
+ylabel('C_D');
+xtitle('FIGURE 7-41');
+plot((Re_m/10^5),C_Dm,'o');
+rho_p=rho_m;// Density of air in kg/m^3
+w_p=w_m;// Width of the prototype in m
+mu_p=mu_m;// Viscosity of air in kg/m.s
+Re_p=(rho_p*V_p*w_p)/(mu_p);// Reynolds number of the prototype
+A_p=A_m;// // Area of the prototype in m^2
+C_Dp=C_Dm(10);// Drag coefficient
+F_Dp=(1/2)*rho_p*V_p^2*C^2*A_p*C_Dp;// Aerodynamic drag on the prototype in N
+printf("The aerodynamic drag on the vehicle=%0.0f N\n",F_Dp);
+// The answer provided in the textbook is wrong
diff --git a/3720/CH7/EX7.11/Ex7_11.sce b/3720/CH7/EX7.11/Ex7_11.sce new file mode 100644 index 000000000..95695bacc --- /dev/null +++ b/3720/CH7/EX7.11/Ex7_11.sce @@ -0,0 +1,12 @@ +//Example 7_11
+clc;clear;
+// Given values
+L_r=1/100;// (L_r=L_m/L_p) Length scale factor
+
+//Properties
+// For water at atmospheric pressure and at T = 20°C
+nu_p=1.002*10^-6;// The prototype kinematic viscosity in m^2/s
+
+// Calculation
+nu_m=nu_p*(L_r)^(3/2);
+printf("Required kinematic viscosity of model liquid:nu_m=%0.2e m^2/s\n",nu_m);
diff --git a/3720/CH7/EX7.4/Ex7_4.sce b/3720/CH7/EX7.4/Ex7_4.sce new file mode 100644 index 000000000..d3a734b91 --- /dev/null +++ b/3720/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,20 @@ +//Example 7_4
+clc;clear;
+// Given values
+g_moon=9.81/6;//The gravitational constant on the moon in m/s^2
+t_1=2.75;
+V=21;// Initial speed of the ball in m/s
+theta=5;// degree
+z_0=2.0;// m
+
+//Calculation
+//(a)
+w_0=V*sind(theta);
+Fr=w_0^2/(g_moon*z_0);
+Fr=(Fr)^2;
+t=(t_1*z_0)/w_0
+printf("Estimated time to strike the ground=%0.2f s\n",t);
+//(b)
+t_2=(w_0+sqrt(w_0^2+(2*z_0*g_moon)))/g_moon;
+printf("Exact time to strike the ground=%0.2f s\n",t_2);
+// The answers vary due to round off error
diff --git a/3720/CH7/EX7.5/Ex7_5.sce b/3720/CH7/EX7.5/Ex7_5.sce new file mode 100644 index 000000000..a1fcd0b40 --- /dev/null +++ b/3720/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,18 @@ +//Example 7_5
+clc;clear;
+// Given values
+// Properties
+//For air at atmospheric pressure and at T = 25°C
+T=25;// °C
+rho_p=1.184;//kg/m^3
+mu_p=1.849*10^-5;//kg/m.s
+//Similarly,at T=5°C
+T=5;// °C
+rho_m=1.269;//kg/m^3
+mu_m=1.754*10^-5;// kg/m.s
+V_p=50;//Speed in mi/h
+// (L_p/L_m)=5 The ratio of Lp to Lm is known because the prototype is five times larger than the scale model
+
+// Calculation
+V_m=(V_p*(mu_m/mu_p)*(rho_p/rho_m)*(5));
+printf("The unknown wind tunnel speed for the model tests=%0.0f mi/h\n",V_m);
diff --git a/3720/CH7/EX7.6/Ex7_6.sce b/3720/CH7/EX7.6/Ex7_6.sce new file mode 100644 index 000000000..c9f93e136 --- /dev/null +++ b/3720/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,20 @@ +//Example 7_6
+clc;clear;
+// Given values
+// Properties
+//For air at atmospheric pressure and at T = 25°C
+T=25;//degree celsius
+rho_p=1.184;//kg/m^3
+mu_p=1.849*10^-5;//kg/m.s
+V_p=50;//Speed in mi/h
+//Similarly,at T=5°C
+T=5;//degree celsius
+rho_m=1.269;//kg/m^3
+mu_m=1.754*10^-5;// kg/m.s
+V_m=221;//mi/h
+// (L_p/L_m)=5 The ratio of Lp to Lm is known because the prototype is five times larger than the scale model
+F_dm=21.2;//The average drag force on the model in lbf
+
+// Calculation
+F_dp=F_dm*(rho_p/rho_m)*(V_p/V_m)^2*(5)^2;
+printf("The aerodynamic drag force on the prototype=%0.1f lbf",F_dp);
|