diff options
Diffstat (limited to '3685/CH14')
-rw-r--r-- | 3685/CH14/EX14.1/Ex14_1.sce | 11 | ||||
-rw-r--r-- | 3685/CH14/EX14.1/Ex14_1.txt | 4 | ||||
-rw-r--r-- | 3685/CH14/EX14.10/Ex14_10.sce | 26 | ||||
-rw-r--r-- | 3685/CH14/EX14.10/Ex14_10.txt | 7 | ||||
-rw-r--r-- | 3685/CH14/EX14.11/Ex14_11.sce | 22 | ||||
-rw-r--r-- | 3685/CH14/EX14.11/Ex14_11.txt | 5 | ||||
-rw-r--r-- | 3685/CH14/EX14.12/Ex14_12.sce | 39 | ||||
-rw-r--r-- | 3685/CH14/EX14.12/Ex14_12.txt | 5 | ||||
-rw-r--r-- | 3685/CH14/EX14.2/Ex14_2.sce | 22 | ||||
-rw-r--r-- | 3685/CH14/EX14.2/Ex14_2.txt | 7 | ||||
-rw-r--r-- | 3685/CH14/EX14.3/Ex14_3.sce | 35 | ||||
-rw-r--r-- | 3685/CH14/EX14.3/Ex14_3.txt | 12 | ||||
-rw-r--r-- | 3685/CH14/EX14.4/Ex14_4.sce | 32 | ||||
-rw-r--r-- | 3685/CH14/EX14.4/Ex14_4.txt | 9 | ||||
-rw-r--r-- | 3685/CH14/EX14.5/Ex14_5.sce | 31 | ||||
-rw-r--r-- | 3685/CH14/EX14.5/Ex14_5.txt | 5 | ||||
-rw-r--r-- | 3685/CH14/EX14.6/Ex14_6.sce | 30 | ||||
-rw-r--r-- | 3685/CH14/EX14.6/Ex14_6.txt | 5 | ||||
-rw-r--r-- | 3685/CH14/EX14.7/Ex14_7.sce | 18 | ||||
-rw-r--r-- | 3685/CH14/EX14.7/Ex14_7.txt | 4 | ||||
-rw-r--r-- | 3685/CH14/EX14.8/Ex14_8.sce | 24 | ||||
-rw-r--r-- | 3685/CH14/EX14.8/Ex14_8.txt | 4 | ||||
-rw-r--r-- | 3685/CH14/EX14.9/Ex14_9.sce | 22 | ||||
-rw-r--r-- | 3685/CH14/EX14.9/Ex14_9.txt | 6 |
24 files changed, 385 insertions, 0 deletions
diff --git a/3685/CH14/EX14.1/Ex14_1.sce b/3685/CH14/EX14.1/Ex14_1.sce new file mode 100644 index 000000000..924d336e6 --- /dev/null +++ b/3685/CH14/EX14.1/Ex14_1.sce @@ -0,0 +1,11 @@ +clc
+T2 = -5 // Cold storage temperature in degree Celsius
+T1 = 35 // Surrounding temperature in degree Celsius
+COP = (T2+273)/((T1+273)-(T2+273))
+ACOP = COP/3 // Actual COP
+Q2 = 29 // Heat leakage in kW
+W = Q2/ACOP
+printf("\n Example 14.1\n")
+printf("\n Power required to drive the plane is %f kW",W)
+//The answers vary due to round off error
+
diff --git a/3685/CH14/EX14.1/Ex14_1.txt b/3685/CH14/EX14.1/Ex14_1.txt new file mode 100644 index 000000000..2c5f591c9 --- /dev/null +++ b/3685/CH14/EX14.1/Ex14_1.txt @@ -0,0 +1,4 @@ +
+ Example 14.1
+
+ Power required to drive the plane is 12.985075 kW
\ No newline at end of file diff --git a/3685/CH14/EX14.10/Ex14_10.sce b/3685/CH14/EX14.10/Ex14_10.sce new file mode 100644 index 000000000..8d7dd4c6b --- /dev/null +++ b/3685/CH14/EX14.10/Ex14_10.sce @@ -0,0 +1,26 @@ +clc
+P1 = 2.4 //Compressor inlet pressure in bar
+T1 = 0 // Compressor inlet temperature in degree Celsius
+h1 = 188.9 // Enthalpy of refrigerant at state 1 in kJ/kg
+s1 = 0.7177 // Entropy of refrigerant at state 1 in kJ/kgK
+v1 = 0.0703 // Specific volume at state 1 in m^3/kg
+P2 = 9 // Compressor outlet pressure in bar
+T2 = 60 // Compressor outlet pressure in degree Celsius
+h2 = 219.37 // Actual compressor outlet enthalpy in kJ/kgK
+h2s = 213.27 // Ideal compressor outlet enthalpy in kJ/kgK
+h3 = 71.93 // Enthalpy of refrigerant at state 3 in kJ/kg
+h4 = h3 // Isenthalpic process
+
+A1V1 = 0.6/60 // volume flow rate in kg/s
+m_dot = A1V1/v1 // mass flow rate
+Wc_dot = m_dot*(h2-h1) // Compressor work
+Q1_dot = m_dot*(h2-h3) // Heat extracted
+COP = Q1_dot/Wc_dot // Coefficient of performance
+nis = (h2s-h1)/(h2-h1) // Isentropic compressor efficiency
+printf("\n Example 14.10\n")
+printf("\n Power input is %f kW",Wc_dot)
+printf("\n Heating capacity is %f kW",Q1_dot)
+printf("\n COP is %f",COP)
+printf("\n The isentropic compressor efficiency is %f percent",nis*100)
+//The answers vary due to round off error
+
diff --git a/3685/CH14/EX14.10/Ex14_10.txt b/3685/CH14/EX14.10/Ex14_10.txt new file mode 100644 index 000000000..09d8c898a --- /dev/null +++ b/3685/CH14/EX14.10/Ex14_10.txt @@ -0,0 +1,7 @@ +
+ Example 14.10
+
+ Power input is 4.334282 kW
+ Heating capacity is 20.972973 kW
+ COP is 4.838858
+ The isentropic compressor efficiency is 79.980309 percent
\ No newline at end of file diff --git a/3685/CH14/EX14.11/Ex14_11.sce b/3685/CH14/EX14.11/Ex14_11.sce new file mode 100644 index 000000000..57d888567 --- /dev/null +++ b/3685/CH14/EX14.11/Ex14_11.sce @@ -0,0 +1,22 @@ +
+clc
+T1 = 275 // Temperature of air at entrance to compressor in K
+T3 = 310 // Temperature of air at entrance to turbine in K
+P1 = 1 // Inlet pressure in bar
+P2 = 4 // Outlet pressure in bar
+nc = 0.8 // Compressor efficiency
+T2s = T1*(P2/P1)^(.286) // Ideal temperature after compression
+T2 = T1 + (T2s-T1)/nc // Actual temperature after compression
+pr1 = 0.1 // Pressure loss in cooler in bar
+pr2 = 0.08 //Pressure loss in condenser in bar
+P3 = P2-0.1 // Actual pressure in condenser
+P4 = P1+0.08 // Actual pressure in evaporator
+PR = P3/P4 // Pressure ratio
+T4s = T3*(1/PR)^(0.286) // Ideal temperature after expansion
+nt = 0.85 // turbine efficiency
+T4 = T3-(T3-T4s)*nt // Actual temperature after expansion
+COP = (T1-T4)/((T2-T3)-(T1-T4)) // Coefficient of performance
+printf("\n Example 14.11\n")
+printf("\n Pressure ratio for the turbine is %f ",PR)
+printf("\n COP is %f ",COP)
+//The answers vary due to round off error
diff --git a/3685/CH14/EX14.11/Ex14_11.txt b/3685/CH14/EX14.11/Ex14_11.txt new file mode 100644 index 000000000..a4b45a06d --- /dev/null +++ b/3685/CH14/EX14.11/Ex14_11.txt @@ -0,0 +1,5 @@ +
+ Example 14.11
+
+ Pressure ratio for the turbine is 3.611111
+ COP is 0.533011
\ No newline at end of file diff --git a/3685/CH14/EX14.12/Ex14_12.sce b/3685/CH14/EX14.12/Ex14_12.sce new file mode 100644 index 000000000..556e59dc3 --- /dev/null +++ b/3685/CH14/EX14.12/Ex14_12.sce @@ -0,0 +1,39 @@ +clear
+clc
+// Given that
+L = 60 // Cooling load in kW
+p = 1 // Pressure in bar
+t = 20 // Temperature in degree celsius
+v = 900 // Speed of aircraft in km/h
+p1 = 0.35 // Pressure in bar
+T1 = 255 // Temperature in K
+nd = .85 // Diffuser efficiency
+rp = 6 // Pressure ratio of compressor
+nc = .85 // Copressor efficiency
+E = 0.9 // Effectiveness of air cooler
+nt = 0.88 // Turbine efficiency
+p_ = 0.08 // Pressure drop in air cooler in bar
+p5 = 1.08 // Pressure in bar
+cp = 1.005 // Heat capacity of air at constant pressure in kJ/kgK
+gama = 1.4 // Ratio of heat capacities of air
+printf("\n Example 14.12\n")
+V = v*(5/18)
+T2_ = T1 + (V^2)/(2*cp*1000)
+T2 = T2_
+p2_ = p1*((T2_/T1)^((gama/(gama-1))))
+p2 = p1 + nd*(p2_-p1)
+p3 = rp*p2
+T3_ = T2*((p3/p2)^((gama-1)/gama))
+T3 = T2 + (T3_-T2)/nc
+P = cp*(T3-T2)
+p4 = p3 - p_
+T4 = T3 - E*(T3-T2)
+T5_ = T4/((p4/p5)^(.286))
+T5 = T4 - (T4-T5_)/nt
+RE = cp*(t+273 - T5)
+m = L/51.5
+Pr = m*P
+COP = L/Pr
+printf("\n Mass flow rate of air flowing through the cooling system is %f kg/s",m)
+printf("\n COP is %f ",COP)
+//The answers vary due to round off error
diff --git a/3685/CH14/EX14.12/Ex14_12.txt b/3685/CH14/EX14.12/Ex14_12.txt new file mode 100644 index 000000000..285d2e5ba --- /dev/null +++ b/3685/CH14/EX14.12/Ex14_12.txt @@ -0,0 +1,5 @@ +
+ Example 14.12
+
+ Mass flow rate of air flowing through the cooling system is 1.165049
+ COP is 0.227742
\ No newline at end of file diff --git a/3685/CH14/EX14.2/Ex14_2.sce b/3685/CH14/EX14.2/Ex14_2.sce new file mode 100644 index 000000000..6eab7a711 --- /dev/null +++ b/3685/CH14/EX14.2/Ex14_2.sce @@ -0,0 +1,22 @@ +clc
+// At P = .14 MPa
+h1 = 236.04 // Enthalpy at state 1 in kJ/kg
+s1 = 0.9322 // Entropy at state 2 in kJ/kgK
+s2 = s1 // Isenthalpic process
+// At P = 0.8 MPa
+h2 = 272.05 // Enthalpy at state 2 in kJ/kg
+h3 = 93.42 // Enthalpy at state 3 in kJ/kg
+h4 = h3 // Isenthalpic process
+m = 0.06 // mass flow rate in kg/s
+Q2 = m*(h1-h4) // Heat absorption
+Wc = m*(h2-h1) // Compressor work
+Q1 = m*(h2-h4) // Heat rejection in evaporator
+COP = Q2/Wc // coefficient of performance
+
+printf("\n Example 14.2\n")
+printf("\n The rate of heat removal is %f kW",Q2)
+printf("\n Power input to the compressor is %f kW",Wc)
+printf("\n The heat rejection rate in the condenser is %f kW",Q1)
+printf("\n COP is %f kW",COP)
+//The answers vary due to round off error
+
diff --git a/3685/CH14/EX14.2/Ex14_2.txt b/3685/CH14/EX14.2/Ex14_2.txt new file mode 100644 index 000000000..dee0337cb --- /dev/null +++ b/3685/CH14/EX14.2/Ex14_2.txt @@ -0,0 +1,7 @@ +
+ Example 14.2
+
+ The rate of heat removal is 8.557200 kW
+ Power input to the compressor is 2.160600 kW
+ The heat rejection rate in the condenser is 10.717800 kW
+ COP is 3.960567 kW
\ No newline at end of file diff --git a/3685/CH14/EX14.3/Ex14_3.sce b/3685/CH14/EX14.3/Ex14_3.sce new file mode 100644 index 000000000..5715fc8c5 --- /dev/null +++ b/3685/CH14/EX14.3/Ex14_3.sce @@ -0,0 +1,35 @@ +clc
+h1 = 183.19 // Enthalpy at state 1 in kJ/kg
+h2 = 209.41 // Enthalpy at state 2 in kJ/kg
+h3 = 74.59 // Enthalpy at state 3 in kJ/kg
+h4 = h3 // Isenthalpic process
+T1 = 40 // Evaporator temperature in degree Celsius
+T2 = -10 // Condenser temperature in degree Celsius
+W = 5 // Plant capacity in tonnes of refrigeration
+w = (W*14000/3600)/(h1-h4) // Refrigerant flow rate
+v1 = 0.077 // Specific volume of vapor in m^3/kg
+VFR = w*v1 // volume flow rate
+T = 48 // Compressor discharge temperature in degree Celsius
+P2 = 9.6066 // Pressure after compression
+P1 = 2.1912 // Pressure before compression
+rp = P2/P1 // Pressure ratio
+Q1 = w*(h2-h3) // Heat rejected in condenser
+hf = 26.87 // Enthalpy of fluid in kJ/kg
+hfg = 156.31// Latent heat of vaporization in kJ/kg
+x4 = (h4-hf)/hfg // quality of refrigerant
+COP_v = (h1-h4)/(h2-h1) // Actual coefficient of performance of cycle
+PI = w*(h2-h1) // Power input
+COP = (T2+273)/((T1+273)-(T2+273)) // Ideal coefficient of performance
+r = COP_v/COP
+printf("\n Example 14.3\n")
+printf("\n Refrigerant flow rate is %f kg/s",w)
+printf("\n Volume flow rate is %f m^3/s",VFR)
+printf("\n Compressor discharge temperature is %d degree Celsius ",T)
+printf("\n Pressure ratio is %f ",rp)
+printf("\n Heat rejected to the condenser is %f kW",Q1)
+printf("\n Flash gas percentage is %f percent",x4*100)
+printf("\n COP is %f kW",COP_v)
+printf("\n Power required to drive the compressor is %f kW",PI)
+printf("\n Ratio of COP of cycle with Carnot refrigerator is %f",r)
+//The answers vary due to round off error
+
diff --git a/3685/CH14/EX14.3/Ex14_3.txt b/3685/CH14/EX14.3/Ex14_3.txt new file mode 100644 index 000000000..451b2f748 --- /dev/null +++ b/3685/CH14/EX14.3/Ex14_3.txt @@ -0,0 +1,12 @@ +
+ Example 14.3
+
+ Refrigerant flow rate is 0.179046 kg/s
+ Volume flow rate is 0.013787 m^3/s
+ Compressor discharge temperature is 48 degree Celsius
+ Pressure ratio is 4.384173
+ Heat rejected to the condenser is 24.139042 kW
+ Flash gas percentage is 30.529077 percent
+ COP is 4.141876 kW
+ Power required to drive the compressor is 4.694598 kW
+ Ratio of COP of cycle with Carnot refrigerator is 0.787429
\ No newline at end of file diff --git a/3685/CH14/EX14.4/Ex14_4.sce b/3685/CH14/EX14.4/Ex14_4.sce new file mode 100644 index 000000000..8c308aebd --- /dev/null +++ b/3685/CH14/EX14.4/Ex14_4.sce @@ -0,0 +1,32 @@ +clc
+h3 = 882 // Enthalpy at state 3 in kJ/kg
+h2 = 1034 // Enthalpy at state 2 in kJ/kg
+h6 = 998 // Enthalpy at state 6 in kJ/kg
+h1 = 1008 // Enthalpy at state 1 in kJ/kg
+v1 = 0.084 // Specific volume at state 1 in m^3/kg
+t4 = 25 // Temperature at state 4 in degree Celsius
+m = 10 // mass flow rate in kg/s
+h4 = h3-h1+h6
+h5 = h4 // isenthalpic process
+w = (m*14000)/((h6-h5)*3600) // in kg/s
+VFR = w*3600*v1 // Volume flow rate in m^3/h
+ve = 0.8 // volumetric efficiency
+CD = VFR/(ve*60) // Compressor displacement in m^3/min
+N = 900 // Number of strokes per minute
+n = 2 // number of cylinder
+
+D = ((CD*4)/(%pi*1.1*N*n))^(1/3) // L = 1.1D L = length D = diameter
+L = 1.1*D
+COP = (h6-h5)/(h2-h1) // coefficient of performance
+PI = w*(h2-h1) // Power input
+
+printf("\n Example 14.4\n")
+printf("\n Refrigeration effect is %d kJ/kg",h6-h5)
+printf("\n Refrigerant flow rate is %f kg/s",w)
+printf("\n Diameter of cylinder is %f cm",D*100)
+printf("\n Length of cylinder is %f cm",L*100)
+printf("\n COP is %f ",COP)
+printf("\n Power required to drive the compressor is %f kW",PI)
+
+//The answers vary due to round off error
+
diff --git a/3685/CH14/EX14.4/Ex14_4.txt b/3685/CH14/EX14.4/Ex14_4.txt new file mode 100644 index 000000000..dd941efc9 --- /dev/null +++ b/3685/CH14/EX14.4/Ex14_4.txt @@ -0,0 +1,9 @@ +
+ Example 14.4
+
+ Refrigeration effect is 126 kJ/kg
+ Refrigerant flow rate is 0.308642 kg/s
+ Diameter of cylinder is 10.773252 cm
+ Length of cylinder is 11.850577 cm
+ COP is 4.846154
+ Power required to drive the compressor is 8.024691 kW
\ No newline at end of file diff --git a/3685/CH14/EX14.5/Ex14_5.sce b/3685/CH14/EX14.5/Ex14_5.sce new file mode 100644 index 000000000..ec4e64f47 --- /dev/null +++ b/3685/CH14/EX14.5/Ex14_5.sce @@ -0,0 +1,31 @@ +clc
+P2 = 1554.3 // Pressure at state 2 in kPa
+P1 = 119.5// Pressure at state 1 in kPa
+Pi = sqrt(P1*P2)
+h1 = 1404.6 // Enthalpy at state1 in kJ/kg
+h2 = 1574.3 // Enthalpy at state2 in kJ/kg
+h3 = 1443.5 // Enthalpy at state3 in kJ/kg
+h4 = 1628.1// Enthalpy at state4 in kJ/kg
+h5 = 371.7 // Enthalpy at state5 in kJ/kg
+h6 = h5 // Isenthalpic process
+h7 = 181.5// Enthalpy at state7 in kJ/kg
+w = 30 // capacity of plant in tonnes of refrigeration
+m2_dot = (3.89*w)/(h1-h7) // mass flow rate in upper cycle
+m1_dot = m2_dot*((h2-h7)/(h3-h6))// mass flow rate in lower cycle
+Wc_dot = m2_dot*(h2-h1)+m1_dot*(h4-h3) // Compressor work
+COP = w*3.89/Wc_dot // Coefficient of performance of cycle
+// single stage
+h1_ = 1404.6 //Enthalpy at state1 in kJ/kg
+h2_ = 1805.1 // Enthalpy at state2 in kJ/kg
+h3_ = 371.1 // Enthalpy at state3 in kJ/kg
+h4_ = h3_ // Isenthalpic process
+m_dot = (3.89*30)/(h1_-h4_) // mass flow rate in cycle
+Wc = m_dot*(h2_-h1_) // Compressor work
+COP_ = w*3.89/Wc // Coefficient of performance of cycle
+IW = (Wc-Wc_dot)/Wc_dot // Increase in compressor work
+ICOP = (COP-COP_)/COP_ // Increase in COP for 2 stage compression
+printf("\n Example 14.5\n")
+printf("\n Increase in work of compression for single stage is %f percent",IW*100)
+printf("\n Increase in COP for 2 stage compression is %f percent",ICOP*100)
+//The answers vary due to round off error
+
diff --git a/3685/CH14/EX14.5/Ex14_5.txt b/3685/CH14/EX14.5/Ex14_5.txt new file mode 100644 index 000000000..c2210127e --- /dev/null +++ b/3685/CH14/EX14.5/Ex14_5.txt @@ -0,0 +1,5 @@ +
+ Example 14.5
+
+ Increase in work of compression for single stage is 15.719846 percent
+ Increase in COP for 2 stage compression is 15.719846 percent
\ No newline at end of file diff --git a/3685/CH14/EX14.6/Ex14_6.sce b/3685/CH14/EX14.6/Ex14_6.sce new file mode 100644 index 000000000..3131de0d6 --- /dev/null +++ b/3685/CH14/EX14.6/Ex14_6.sce @@ -0,0 +1,30 @@ +clc
+// Given that
+te = -10 // Evaporator temperature in degree celsius
+pc = 7.675 // Condenser pressure in bar
+pf = 4.139 // Flash chamber pressure in bar
+P = 100 // Power input to compressor in kW
+printf("\n Example 14.6\n")
+// From the property table of R-134a,
+h7 = 140.96 // In kJ/kg
+hf = 113.29 // In kJ/kg
+hfg = 300.5-113.29 // In kJ/kg
+hg = 300.5 // In kJ/kg
+h1 = 288.86 // In kJ/kg
+s1 = 1.17189 // // In kJ/kgK
+s2 =s1
+//By interpolation
+h2 = 303.468 // In kJ/kg
+x8 = (h7-hf)/hfg
+m1=x8
+h5 = (1-m1)*h2 + m1*hg
+// By interpolation
+s5 = 1.7174 // In kJ/kgK
+s6=s5
+h6 = 315.79 // In kJ/kg
+m = P/((h6-h5) + (1-m1)*(h2-h1))
+m_e = (1-m1)*m
+COP = m_e*(h1-hf)/P
+printf("\n The COP of the plant is %f, \n The mass flow rate of refrigerant in the evaporator is %f kg/s",COP,m_e)
+
+
diff --git a/3685/CH14/EX14.6/Ex14_6.txt b/3685/CH14/EX14.6/Ex14_6.txt new file mode 100644 index 000000000..27ed45a7b --- /dev/null +++ b/3685/CH14/EX14.6/Ex14_6.txt @@ -0,0 +1,5 @@ +
+ Example 14.6
+
+ The COP of the plant is 5.935060,
+ The mass flow rate of refrigerant in the evaporator is 3.380453 kg/s
\ No newline at end of file diff --git a/3685/CH14/EX14.7/Ex14_7.sce b/3685/CH14/EX14.7/Ex14_7.sce new file mode 100644 index 000000000..e65ca6773 --- /dev/null +++ b/3685/CH14/EX14.7/Ex14_7.sce @@ -0,0 +1,18 @@ +clc
+tsat = 120.2 // Saturation temperature in degree Celsius
+hfg = 2201.9 // Latent heat of fusion in kJ/kg
+T1 = 120.2 // Generator temperature in degree Celsius
+T2 = 30 // Ambient temperature in degree Celsius
+Tr = -10 // Operating temperature of refrigerator in degree Celsius
+COP_max = (((T1+273)-(T2+273))*(Tr+273))/(((T2+273)-(Tr+273))*(T1+273)) // Ideal coefficient of performance
+ACOP = 0.4*COP_max // Actual COP
+L = 20 // Refrigeration load in tonnes
+Qe = (L*14000)/3600 // Heat extraction in KW
+Qg = Qe/ACOP // Heat transfer from generator
+x = 0.9 // Quality of refrigerant
+H = x*hfg // Heat extraction
+SFR = Qg/H // Steam flow rate
+printf("\n Example 14.7\n")
+printf("\n Steam flow rate required is %f kg/s",SFR)
+//The answers vary due to round off error
+
diff --git a/3685/CH14/EX14.7/Ex14_7.txt b/3685/CH14/EX14.7/Ex14_7.txt new file mode 100644 index 000000000..5f5e83f86 --- /dev/null +++ b/3685/CH14/EX14.7/Ex14_7.txt @@ -0,0 +1,4 @@ +
+ Example 14.7
+
+ Steam flow rate required is 0.065053 kg/s
\ No newline at end of file diff --git a/3685/CH14/EX14.8/Ex14_8.sce b/3685/CH14/EX14.8/Ex14_8.sce new file mode 100644 index 000000000..4db965fc4 --- /dev/null +++ b/3685/CH14/EX14.8/Ex14_8.sce @@ -0,0 +1,24 @@ +clc
+// Given that
+tf = 5 // Temperature of flash chamber in degree celsius
+x = 0.98 // Quality of water vapour living the evaporator
+t2 = 14 // Returning temperature of chilled water in degree celsius
+t0 = 30 // Make up water temperature in degree celsius
+m = 12 // Mass flow rate of chilled water in kg/s
+nc = 0.8 // Compressor efficiecy
+pc = 0.1 // Condenser pressure in bar
+printf("\n Example 14.8\n")
+//From the steam table
+hf = 58.62 // In kJ/kg at 14 degree celsius
+hf_ = 20.93 // In kJ/kg at 5 degree celsius
+hf__ = 125.73 // In kJ/kg at 30 degree celsius
+hv = x*2510.7
+Rc = m*(hf-hf_)/3.5
+m_v = Rc*3.5/(hv-hf__)
+// At 0.10 bar
+hg = 2800 // In kJ/kg
+Win = m_v*(hg-hv)/nc
+COP = Rc*3.5/Win
+printf("\nCOP of the system is %f",COP)
+
+
diff --git a/3685/CH14/EX14.8/Ex14_8.txt b/3685/CH14/EX14.8/Ex14_8.txt new file mode 100644 index 000000000..b5e00a100 --- /dev/null +++ b/3685/CH14/EX14.8/Ex14_8.txt @@ -0,0 +1,4 @@ +
+ Example 14.8
+
+COP of the system is 5.501407
\ No newline at end of file diff --git a/3685/CH14/EX14.9/Ex14_9.sce b/3685/CH14/EX14.9/Ex14_9.sce new file mode 100644 index 000000000..d1bb85481 --- /dev/null +++ b/3685/CH14/EX14.9/Ex14_9.sce @@ -0,0 +1,22 @@ +clc
+T1 = 4 // Compressor inlet temperature in degree Celsius
+T3 = 55 // Cooling limit in heat exchanger in degree Celsius
+rp = 3 // Pressure ratio
+g = 1.4 // Heat capacity ratio
+cp = 1.005 // Constant volume heat capacity
+L = 3 // Cooling load in tonnes of refrigeration
+nc = 0.72 // compressor efficiency
+T2s = (T1+273)*(rp^((g-1)/g)) // Ideal temperature after compression
+T2 = (T1+273)+(T2s-T1-273)/nc // Actual temperature after compression
+T4s = (T3+273)/(rp^((g-1)/g)) // Ideal temperature after expansion
+T34 = 0.78*(T3+273-T4s) // Change in temperature during expansion process
+T4 = T3+273-T34 // Actual temperature after expansion
+COP = (T1+273-T4)/((T2-T1-273)-(T3+273-T4)) // Coefficient of performance of cycle
+P = (L*14000)/(COP*3600) // Driving power required
+m = (L*14000)/(cp*(T1+273-T4)) // Mass flow rate of air
+printf("\n Example 14.9\n")
+printf("\n COP of the refrigerator is %f",COP)
+printf("\n Driving power required is %f kW",P)
+printf("\n Mass flow rate is %f kg/s",m/3600)
+//The answers vary due to round off error
+
diff --git a/3685/CH14/EX14.9/Ex14_9.txt b/3685/CH14/EX14.9/Ex14_9.txt new file mode 100644 index 000000000..138c06990 --- /dev/null +++ b/3685/CH14/EX14.9/Ex14_9.txt @@ -0,0 +1,6 @@ +
+ Example 14.9
+
+ COP of the refrigerator is 0.245732
+ Driving power required is 47.477199 kW
+ Mass flow rate is 0.647683 kg/s
\ No newline at end of file |