summaryrefslogtreecommitdiff
path: root/3685/CH10/EX10.8/Ex10_8.sce
diff options
context:
space:
mode:
Diffstat (limited to '3685/CH10/EX10.8/Ex10_8.sce')
-rw-r--r--3685/CH10/EX10.8/Ex10_8.sce62
1 files changed, 62 insertions, 0 deletions
diff --git a/3685/CH10/EX10.8/Ex10_8.sce b/3685/CH10/EX10.8/Ex10_8.sce
new file mode 100644
index 000000000..b85bcbaa7
--- /dev/null
+++ b/3685/CH10/EX10.8/Ex10_8.sce
@@ -0,0 +1,62 @@
+clc
+mn = 3 // Mass of nitrogen in kg
+mc = 5 // mass of CO2 in kg
+an = 28 // Atomic weight of nitrogen
+ac = 44 // Atomic weight of CO2
+// Part (a)
+xn = (mn/an)/((mn/an)+(mc/ac)) // mole fraction of nitrogen
+xc = (mc/ac)/((mn/an)+(mc/ac)) // mole fraction of carbon
+
+printf("\n Example 10.8")
+printf("\n\n Mole fraction of N2 is %f ",xn)
+printf("\n Mole fraction of CO2 is %f" ,xc)
+//The answers vary due to round off error
+
+// Part (b)
+M = xn*an+xc*ac // Equivalent molecular weight
+printf("\n\n Equivalent molecular weight of mixture is %fkg/kg mol" ,M)
+
+// Part (c)
+R = 8.314 // Gas constant
+Req = ((mn*R/an)+(mc*R/ac))/(mn+mc)
+printf("\n\n The equivalent gas constant of the mixture is %f kJ/kg K" ,Req)
+
+// Part (d)
+P = 300 // Initial pressure in kPa
+T = 20 // Initial temperature in degree Celsius
+Pn = xn*P // Partial pressure of Nitrogen
+Pc = xc*P // Partial pressure of CO2
+Vn = (mn*R*(T+273))/(P*an) // Volume of nitrogen
+Vc = (mc*R*(T+273))/(P*ac) // Volume of CO2
+printf("\n\n Partial pressures of nitrogen and CO2 are \n %f kPa and %f kPa respectively",Pn,Pc)
+printf("\n Partial volume of nitrogen and CO2 are \n %f kPa and %f kPa respectively",Vn,Vc)
+// Part (e)
+V = (mn+mc)*Req*(T+273)/P // Total volume
+rho = (mn+mc)/V // mass density
+printf("\n\n Total volume of mixture is %f m^3" ,V)
+printf("\n Density of mixture is %f kg/m^3" ,rho)
+
+// Part (f)
+gn = 1.4 // Heat capacity ratio for nitrogen
+gc = 1.286 // Heat capacity ratio for carbon dioxide
+cvn = R/((gn-1)*an) // cp and cv of N2
+cpn = gn*cvn // Constant pressure heat capacity of nitrogen
+cvc = R/((gc-1)*ac) // cp and cv of CO2
+cpc = gc*cvc// COnstant pressure heat capacity of carbon dioxide
+cp = (mn*cpn+mc*cpc)/(mn+mc) // Constant pressure heat capacity ratio of mixture
+cv = (mn*cvn+mc*cvc)/(mn+mc) // Constant volume Heat capacity ratio of mixture
+printf("\n\n Cp and Cv of mixture are \n %fkJ/kg K and %fkJ/kg K respectively" ,cp,cv)
+T1 = T
+T2 = 40
+U21 = (mn+mc)*cv*(T2-T1)
+H21 = (mn+mc)*cp*(T2-T1)
+S21v = (mn+mc)*cv*log((T2+273)/(T1+273)) // If heated at constant volume
+S21p = (mn+mc)*cp*log((T2+273)/(T1+273)) // If heated at constant Pressure
+
+printf("\n\n Change in internal energy of the system heated at constant volume is %fkJ" ,U21)
+printf("\n Change in enthalpy of the system heated at constant volume is %fkJ" ,H21)
+printf("\n Change in entropy of the system heated at constant volume is %f kJ/kg K",S21v)
+printf("\n\n Change in entropy of the system heated at constant Pressure is %fkJ/kgK" ,S21p)
+
+//The answers vary due to round off error
+