diff options
Diffstat (limited to '3683/CH7')
-rw-r--r-- | 3683/CH7/EX7.1/Ex7_1.sce | 52 | ||||
-rw-r--r-- | 3683/CH7/EX7.2/Ex7_2.sce | 58 | ||||
-rw-r--r-- | 3683/CH7/EX7.3/Ex7_3.sce | 47 | ||||
-rw-r--r-- | 3683/CH7/EX7.4/Ex7_4.sce | 38 |
4 files changed, 195 insertions, 0 deletions
diff --git a/3683/CH7/EX7.1/Ex7_1.sce b/3683/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..8bc8f67c4 --- /dev/null +++ b/3683/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,52 @@ +sigma_cbc=5//in MPa
+sigma_st=140//in MPa
+MF=1.6//modification factor
+//let a be span to depth ratio
+l=4//span, in m
+a=MF*20
+D=l*1000/a//in mm
+//to calculate loading
+self_weight=25*(D/10^3)//in kN/m
+finish=1//in kN/m
+live_load=2//in kN/m
+W=self_weight+finish+live_load//total load, in kN/m
+lef=l+D/1000//in m
+M=W*lef^2/8//in kN-m
+//check for depth
+d=round((M*10^6/(0.87*1000))^0.5)//in mm
+//assume 12 mm dia bars
+D=d+12/2+15//in mm
+//the calculated value of D is more than its assumed value
+D=150//revised value of depth, in mm
+self_weight=25*(D/10^3)//in kN/m
+finish=1//in kN/m
+live_load=2//in kN/m
+W=self_weight+finish+live_load//total load, in kN/m
+lef=l+D/1000//in m
+M=W*lef^2/8//in kN-m
+//check for depth
+d=round((M*10^6/(0.87*1000))^0.5)//in mm
+D=d+12/2+15//in mm
+Ast=round(M*10^6/(sigma_st*0.87*d))//in sq mm
+s1=1000*0.785*12^2/Ast//which is less than 3d= 387 mm
+s1=120//approximately, in mm
+Ads=0.15/100*1000*D//distribution steel, in sq mm
+//assume 8 mm dia bars
+s2=1000*0.785*8^2/Ads//which is less than 5d= 645 mm
+s2=220//approximately, in mm
+//to calculate development length
+w=0.345//support width, in m
+lef=l+w//in m
+R=W*lef/2//reaction at support, in kN
+M1=R*w/2-W*w^2/2//bending moment at the face of wall, in kN-m
+sigma_st=M1*10^6/(Ast/2*0.87*d)//in MPa
+Tbd=0.6//in MPa
+Ld=12*sigma_st/(4*Tbd)//in mm
+La=w*1000-25//available length for bar over wall, which is greater than development length
+//check for shear
+V=W*4.15/2//in kN
+Tv=V*10^3/(1000*d)//in MPa
+Tc=0.33//permissible shear in concrete for p=0.71 and M15, in MPa
+Tc=1.3*Tc//permissible shear for slabs, in MPa
+//Tc>Tv; hence no shear reinforcement is required
+mprintf("Summary of design\nSlab thickness=%d mm\nCover=15 mm\nMain steel = 12 mm dia @ %d mm c/c\nAlternate bars are bent up @ 45-degree at support at a distance l/7 from support face\nDistribution steel=8 mm dia @ %d mm c/c",D,s1,s2)
diff --git a/3683/CH7/EX7.2/Ex7_2.sce b/3683/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..570bb956a --- /dev/null +++ b/3683/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,58 @@ +sigma_cbc=5//in MPa
+sigma_st=230//in MPa
+MF=1.4//modification factor
+//let a be span to depth ratio
+l=4.5//span, in m
+a=MF*20
+D=l*1000/a//in mm
+D=160//approximately, in mm
+//to calculate loading
+self_weight=25*(D/10^3)//in kN/m
+finish=1//in kN/m
+partitions=1//in kN/m
+live_load=4//in kN/m
+W=self_weight+finish+partitions+live_load//total load, in kN/m
+lef=l+D/1000//in m
+M=W*lef^2/8//in kN-m
+//check for depth
+d=(M*10^6/(0.9*sigma_cbc/2*0.29*1000))^0.5//in mm
+//assume 12 mm dia bars
+D=d+12/2+15//in mm
+//the calculated value of D is more than its assumed value
+D=1.1*D//revised value of depth, in mm
+D=250//assume, in mm
+self_weight=25*(D/10^3)//in kN/m
+finish=1//in kN/m
+partitions=1//in kN/m
+live_load=4//in kN/m
+W=self_weight+finish+partitions+live_load//total load, in kN/m
+lef=l+D/1000//in m
+M=W*lef^2/8//in kN-m
+//check for depth
+d=round((M*10^6/(0.9*sigma_cbc/2*0.29*1000))^0.5)//in mm
+D=d+12/2+15//in mm
+D=250//approximately, in mm
+Ast=round(M*10^6/(sigma_st*0.9*d))//in sq mm
+s1=1000*0.785*12^2/Ast//which is less than 3d= 690 mm
+s1=155//approximately, in mm
+pt=Ast/1000/d*100//in %
+Ads=0.12/100*1000*D//distribution steel, in sq mm
+//assume 8 mm dia bars
+s2=1000*0.785*8^2/Ads//which is less than 5d= 1150 mm
+s2=165//approximately, in mm
+//to calculate development length
+w=0.23//support width, in m
+l=l+w//in m
+R=W*l/2//reaction at support, in kN
+M1=R*w/2-W*w^2/2//bending moment at the face of wall, in kN-m
+sigma_st=M1*10^6/(Ast/2*0.9*d)//in MPa
+Tbd=0.6//in MPa
+Ld=12*sigma_st/(4*Tbd)//in mm
+La=w*1000-25//available length for bar over wall, which is greater than development length
+//check for shear
+V=W*lef/2//in kN
+Tv=V*10^3/(1000*d)//in MPa
+Tc=0.2212//permissible shear in concrete for p=0.315 and M15, in MPa
+Tc=1.15*Tc//permissible shear for slabs, in MPa
+//Tc>Tv; hence no shear reinforcement is required
+mprintf("Summary of design\nSlab thickness=%d mm\nCover=15 mm\nMain steel = 12 dia @ %d mm c/c\nAlternate bars are bent up at 45-degree at support at a distance of l/7 from support face\nDistribution steel=8 dia @ %d mm c/c",D,s1,s2)
diff --git a/3683/CH7/EX7.3/Ex7_3.sce b/3683/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..40114f8dd --- /dev/null +++ b/3683/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,47 @@ +sigma_cbc=7//in MPa
+sigma_st=230//in MPa
+MF=1.22//modification factor
+//let a be span to depth ratio
+l=5//span, in m
+a=MF*26
+D=l*1000/a//in mm
+D=160//assume, in mm
+//to calculate loading
+self_weight=25*(D/10^3)//in kN/m
+finish=0.75//in kN/m
+partitions=1//in kN/m
+live_load=3//in kN/m
+Wd=self_weight//dead load, in kN/m
+Wl=finish+partitions+live_load//live load, in kN/m
+lef=5.15//effective span, in m
+M1=Wd*lef^2/12+Wl*lef^2/10//bending moment at mid-span, in kN-m
+M2=Wd*lef^2/10+Wl*lef^2/9//bending moment at support next to end support, in kN-m
+//check for depth
+d=(M2*10^6/(0.89*1000))^0.5//in mm
+dia=12//assume 12 mm dia bars
+D=d+12/2+15//>160, hence depth not suitable
+D=1.1*D//in mm
+D=210//assume, in mm
+self_weight=25*(D/10^3)//in kN/m
+Wd=self_weight//in kN/m
+M1=Wd*lef^2/12+Wl*lef^2/10//bending moment at mid-span, in kN-m
+M2=Wd*lef^2/10+Wl*lef^2/9//bending moment at support next to end support, in kN-m
+//check for depth
+d=round((M2*10^6/(0.9*sigma_cbc/2*0.29*1000))^0.5)//in mm
+D=d+12/2+15//<210, hence OK
+D=200//assume, in mm
+d=D-dia/2-15//in mm
+//main steel at mid-span
+Ast1=round(M1*10^6/(sigma_st*0.91*d))//in sq mm
+s1=1000*0.785*12^2/Ast1//in mm
+s1=175//approximately, in mm
+//main steel at support
+Ast2=round(M2*10^6/(sigma_st*0.91*d))//in sq mm
+//alternate bars from mid-span are available at the central support as bent up bars; assuming same amount of steel is available from another adjoining mid-span steel
+Ast2=Ast2-Ast1//which is nominal, hence no separate steel is required
+Ads=0.12/100*1000*D//distribution steel, in sq mm
+//assume 8 mm dia bars
+s2=1000*0.785*8^2/Ads//in mm
+s2=200//approximately, in mm
+mprintf("Summary of design\nSlab thickness=%d mm\nMain steel = 12 mm dia @ %d mm c/c\nAlternate bars are bent up at support\nDistribution steel=8 mm dia @ %d mm c/c",D,s1,s2)
+//answer given in textbook is incorrect
diff --git a/3683/CH7/EX7.4/Ex7_4.sce b/3683/CH7/EX7.4/Ex7_4.sce new file mode 100644 index 000000000..f3ba0720d --- /dev/null +++ b/3683/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,38 @@ +sigma_cbc=5//in MPa
+sigma_st=230//in MPa
+MF=1.4//modification factor
+//let a be span to depth ratio
+l=1//span, in m
+a=MF*7
+D=l*1000/a//in mm
+D=105//assume, in mm
+//to calculate loading
+self_weight=25*(D/10^3)*1.5//in kN/m
+finish=0.5*1.5//in kN/m
+live_load=0.75*1.5//in kN/m
+W=self_weight+finish+live_load//in kN/m
+lef=l+0.23/2//effective span, in m
+M=W*lef/2//in kN-m
+//check for depth
+d=(M*10^6/(0.65*1500))^0.5//in mm
+dia=12//assume 12 mm dia bars
+D=d+12/2+15//<105, hence OK
+D=100//assume, in mm
+d=D-dia/2-15//in mm
+//main steel at mid-span
+Ast=M*10^6/(sigma_st*0.9*d)//in sq mm
+s1=1500*0.785*12^2/Ast//>3d = 237 mm
+s1=235//assume, in mm
+Ads=0.12/100*1000*D//distribution steel, in sq mm
+//assume 6 mm dia bars
+s2=1000*0.785*6^2/Ads//in mm
+s2=235//assume, in mm
+Tbd=0.84//in MPa
+Ld=dia*sigma_st/4/Tbd// in mm
+Ld=821//round-off, in mm
+Tv=W*10^3/1500/d//in MPa
+As=1500*0.785*12^2/235//in sq mm
+pt=As/1500/d*100//in %
+Tc=0.316//in MPa
+//as Tc>Tv, no shear reinforcement required
+mprintf("Summary of design\nThickness of slab = %d mm\nCover = 15mm\nMain steel = 12 mm dia @ %d mm c/c\nProvide development length of %d mm in the beam from face of beam\nDistribution steel = 6 mm dia @ %d mm c/c",D,s1,Ld,s2)
|