summaryrefslogtreecommitdiff
path: root/3683/CH12
diff options
context:
space:
mode:
Diffstat (limited to '3683/CH12')
-rw-r--r--3683/CH12/EX12.1/Ex12_1.sce77
-rw-r--r--3683/CH12/EX12.2/Ex12_2.sce74
-rw-r--r--3683/CH12/EX12.3/Ex12_3.sce68
3 files changed, 219 insertions, 0 deletions
diff --git a/3683/CH12/EX12.1/Ex12_1.sce b/3683/CH12/EX12.1/Ex12_1.sce
new file mode 100644
index 000000000..c40e9f633
--- /dev/null
+++ b/3683/CH12/EX12.1/Ex12_1.sce
@@ -0,0 +1,77 @@
+sigma_cbc=5//in MPa
+sigma_st=230//in MPa
+phi=30//angle of repose, in degrees
+H=5//height of wall, in m
+B=0.6*H//assume, in m
+T=B/4//assume toe to base ratio as 1:4
+W=16//density of retained earth, in kN/cu m
+P=W*H^2/2*(1-sind(phi))/(1+sind(phi))//in kN
+P=67//assume, in kN
+M1=P*H/3//in kN-m
+M1=112//assume, in kN-m
+//bending moment at 2.5 m below the top
+h=2.5//in m
+M2=W*h^2/2*(1-sind(phi))/(1+sind(phi))*h/3//in kN-m
+M2=14//in kN-m
+//thickness of stem (at the base)
+d=sqrt(M1*10^6/0.65/1000)//in mm
+d=415//in mm
+dia=20//assume 20 mm dia bars
+D1=d+dia/2+25//in mm
+D2=200//thickness at top, in mm
+D3=D2+(D1-D2)*h/H//in mm
+d3=sqrt(M2*10^6/0.65/1000)//in mm
+D3=d3+dia/2+25//< 325 mm (provided), hence OK
+D3=325//in mm
+d3=D3-dia/2-25//in mm
+//main steel
+//(a) 5 m below the top
+Ast=M1*10^6/sigma_st/0.9/d//in sq mm
+//provide 20 mm dia bars
+s1=1000*0.785*20^2/Ast//in mm
+s1=240//assume, in mm
+//(b) 2.5 m below the top
+Ast=M2*10^6/sigma_st/0.9/d3//in sq mm
+Astmin=0.12/100*10^3*D3//in sq mm
+Ast=max(Ast,Astmin)//in sq mm
+//provide 12 mm dia bars
+s2=1000*0.785*12^2/Ast//in mm
+s2=290//assume, in mm
+//distribution steel
+Ads=0.12/100*10^3*D3//in sq mm
+//provide 8 mm dia bars
+s3=1000*0.785*8^2/Ads//in mm
+s3=125//assume, in mm
+//check for shear
+V=P//in kN
+Tv=V*10^3/10^3/d//in MPa
+//for M15 grade concrete and pt=0.31
+Tc=0.22//in MPa
+//as Tc > Tv, no shear reinforcement required
+//development length
+//(a) At the base of stem
+dia=20//in mm
+Tbd=0.84//in MPa
+Ld=dia*sigma_st/4/Tbd//in mm
+Ld=1370//assume, in mm
+//(b) At 2.5 m below the top
+dia=12//in mm
+Ld=dia*sigma_st/4/Tbd//in mm
+Ld=825//assume, in mm
+//check for stability
+D4=500//thickness of base, in mm (assume)
+V1=1/2*(D1-D2)/10^3*H*25//in kN
+V2=(D2/10^3)*H*25//in kN
+V3=(D4/10^3)*B*25//weight of base, in kN
+V4=(B-T-D1/10^3)*H*W//weight of soil, in kN
+V=V1+V2+V3+V4//in kN
+M=V1*(T+2/3*(D1-D2)/10^3)+V2*(T+(D1-D2)/10^3+D2/10^3/2)+V3*B/2+V4*(B-(B-T-D1/10^3)/2)//in kN-m
+x=M/V//in m
+x=1.8//assume, in m
+//factor of safety
+//for overturning
+F1=V*x/P/(H/3)//> 1.5, hence OK
+mu=0.5
+//for sliding
+F2=mu*V/P//> 1.5, hence OK
+mprintf("Summary of design:\nThickness of stem (at base) = %d mm\nThickness of stem at top = %d mm\nRefer Fig. 12.4 of textbook for reinforcement details",D1,D2)
diff --git a/3683/CH12/EX12.2/Ex12_2.sce b/3683/CH12/EX12.2/Ex12_2.sce
new file mode 100644
index 000000000..9b2de709a
--- /dev/null
+++ b/3683/CH12/EX12.2/Ex12_2.sce
@@ -0,0 +1,74 @@
+sigma_cbc=5//in MPa
+sigma_st=140//in MPa
+phi=35//angle of repose, in degrees
+H=6//height of wall, in m
+B=0.4*H//assume, in m
+T=B/4//assume toe to base ratio as 1:4
+W=18//density of retained earth, in kN/cu m
+P=W*H^2/2*(1-sind(phi))/(1+sind(phi))//in kN
+P=88//assume, in kN
+M1=P*H/3//in kN-m
+//bending moment at 3 m below the top
+h=3//in m
+M2=W*h^2/2*(1-sind(phi))/(1+sind(phi))*h/3//in kN-m
+M2=22//in kN-m
+//thickness of stem (at the base)
+d=sqrt(M1*10^6/0.87/1000)//in mm
+d=450//in mm
+dia=20//assume 20 mm dia bars
+D1=d+dia/2+25//in mm
+D2=200//thickness at top, in mm
+D3=D2+(D1-D2)*h/H//in mm
+d3=sqrt(M2*10^6/0.87/1000)//in mm
+D3=d3+dia/2+25//< 342.5 mm (provided), hence OK
+D3=342.5//in mm
+d3=D3-dia/2-25//in mm
+//main steel
+//(a) 6 m below the top
+Ast=M1*10^6/sigma_st/0.87/d//in sq mm
+//provide 20 mm dia bars
+s1=1000*0.785*20^2/Ast//in mm
+s1=95//assume, in mm
+//(b) 3 m below the top
+Ast=M2*10^6/sigma_st/0.87/d3//in sq mm
+//provide 10 mm dia bars
+s2=1000*0.785*10^2/Ast//in mm
+s2=130//assume, in mm
+//distribution steel
+Ads=0.15/100*10^3*D3//in sq mm
+//provide 10 mm dia bars
+s3=1000*0.785*10^2/Ads//in mm
+s3=150//assume, in mm
+//check for shear
+V=P//in kN
+Tv=V*10^3/10^3/d//in MPa
+//for M15 grade concrete and pt=0.71
+Tc=0.34//in MPa
+//as Tc > Tv, no shear reinforcement required
+//development length
+//(a) At the base of stem
+dia=20//in mm
+Tbd=0.6//in MPa
+Ld=dia*sigma_st/4/Tbd//in mm
+Ld=1170//assume, in mm
+//(b) At 3 m below the top
+dia=10//in mm
+Ld=dia*sigma_st/4/Tbd//in mm
+Ld=590//assume, in mm
+//check for stability
+D4=500//thickness of base, in mm (assume)
+V1=1/2*(D1-D2)/10^3*H*25//in kN
+V2=(D2/10^3)*H*25//in kN
+V3=(D4/10^3)*B*25//weight of base, in kN
+V4=(B-T-D1/10^3)*H*W//in kN
+V=V1+V2+V3+V4//in kN
+M=V1*(T+2/3*(D1-D2)/10^3)+V2*(T+(D1-D2)/10^3+D2/10^3/2)+V3*B/2+V4*(B-(B-T-D1/10^3)/2)//in kN-m
+x=M/V//in m
+//factor of safety
+//for overturning
+F1=V*x/P/(H/3)//> 1.5, hence OK
+mu=0.5
+//for sliding
+F2=mu*V/P//< 1.5, hence it is not safe against sliding
+mprintf("Summary of design:\nThickness of stem (at base) = %d mm\nThickness of stem at top = %d mm\nRefer Fig. 12.7 of textbook for reinforcement details",D1,D2)
+//answers in textbook for factor of safety against overturning and sliding are incorrect
diff --git a/3683/CH12/EX12.3/Ex12_3.sce b/3683/CH12/EX12.3/Ex12_3.sce
new file mode 100644
index 000000000..ada5ef959
--- /dev/null
+++ b/3683/CH12/EX12.3/Ex12_3.sce
@@ -0,0 +1,68 @@
+sigma_cbc=5//in MPa
+sigma_st=230//in MPa
+phi=30//angle of repose, in degrees
+H=5//height of wall, in m
+B=0.6*H//assume, in m
+T=B/4//assume toe to base ratio as 1:4
+t=450//thickness of wall, in mm
+W=16//density of retained earth, in kN/cu m
+P=W*H^2/2*(1-sind(phi))/(1+sind(phi))//in kN
+P=67//assume, in kN
+y=1.8//in m
+P=67//in kN
+Wt=223//in kN
+D=0.5//thickness of base, in m
+x=1.8-P*(H/3+D/10^3)/Wt//in m
+x=1.15//in m
+e=B/2-x//in m
+q1=Wt/B+Wt*e/(1*B^2/6)//maximum pressure, in kN/sq m
+q2=Wt/B-Wt*e/(1*B^2/6)//minimum pressure, in kN/sq m
+Pa=q1-(q1-q2)/B*T//pressure at A, in kN/sq m
+Pa=100//assume, in kN/sq m
+Pb=q1-(q1-q2)/B*(T+t/10^3)//pressure at B, in kN/sq m
+Pb=85//assume, in kN/sq m
+Ma=Pa*T^2/2+1/2*(q1-Pa)*T*2/3*T-T*D*25*T/2//bending moment at A, in kN-m
+Ma=30//round-off, in kN-m
+Mb=(B-T-t/10^3)^2*H*W/2+(B-T-t/10^3)^2*D*25/2-q2*(B-T-t/10^3)^2/2-(Pb-q2)*1/3*(B-T-t/10^3)^2/2//bending moment at B, in kN-m
+Mb=80//in kN-m
+//design of toe
+d=sqrt(Ma*10^6/0.65/10^3)//in mm
+D=d+10/2+70//<500 mm (provided), hence OK
+D=500//in mm
+d=D-70//in mm
+Ast=Ma*10^6/sigma_st/0.9/d//in sq mm
+Astmin=0.12/100*10^3*D//in sq mm
+Ast=max(Ast,Astmin)//in sq mm
+s1=1000*0.785*10^2/Ast//in mm
+s1=130//assume, in mm
+//distribution steel is same as above
+//check for shear
+V=(q1+Pa)/2*T//in kN
+Tv=V*10^3/10^3/d//in MPa
+//for M15 grade concrete and pt=0.32
+Tc=0.2368//in MPa
+//as Tc > Tv, no shear reinforcement required
+//development length
+dia=10//in mm
+Tbd=0.84//in MPa
+Ld=dia*sigma_st/4/Tbd//in mm
+Ld=685//assume, in mm
+//design of heel
+d=sqrt(Mb*10^6/0.65/10^3)//< 430 mm (provided), hence OK
+d=430//in mm
+Ast=Mb*10^6/sigma_st/0.9/d//in sq mm
+s2=1000*0.785*10^2/Ast//in mm
+s2=85//assume, in mm
+//distribution steel: 0.12% of Ag, hence provide 10 mm dia bars @ 130 mm c/c
+V=(B-T-t/10^3)*H*W-(Pb+q2)/2*(B-T-t/10^3)//in kN
+Tv=V*10^3/10^3/d//in MPa
+//for M15 grade concrete and pt=0.32
+Tc=0.2368//in MPa
+//as Tc > Tv, no shear reinforcement required
+//development length
+dia=10//in mm
+Tbd=0.84//in MPa
+Ld=dia*sigma_st/4/Tbd//in mm
+Ld=685//assume, in mm
+mprintf("Summary of design:\nThickness of base slab=%d mm. Refer to Fig. 12.11 of textbook for reinforcement details.",D)
+//answer in textbook for spacing of 10 mm dia bars for main steel in toe and distribution steel is incorrect