diff options
Diffstat (limited to '3681/CH7')
-rw-r--r-- | 3681/CH7/EX7.33/Ans7_33.PNG | bin | 0 -> 8659 bytes | |||
-rw-r--r-- | 3681/CH7/EX7.33/Ex7_33.sce | 16 | ||||
-rw-r--r-- | 3681/CH7/EX7.41/Ans7_41.PNG | bin | 0 -> 12200 bytes | |||
-rw-r--r-- | 3681/CH7/EX7.41/Ex7_41.sce | 35 |
4 files changed, 51 insertions, 0 deletions
diff --git a/3681/CH7/EX7.33/Ans7_33.PNG b/3681/CH7/EX7.33/Ans7_33.PNG Binary files differnew file mode 100644 index 000000000..541a11334 --- /dev/null +++ b/3681/CH7/EX7.33/Ans7_33.PNG diff --git a/3681/CH7/EX7.33/Ex7_33.sce b/3681/CH7/EX7.33/Ex7_33.sce new file mode 100644 index 000000000..e889eda24 --- /dev/null +++ b/3681/CH7/EX7.33/Ex7_33.sce @@ -0,0 +1,16 @@ +// Calculating the rms line voltage and circulating current
+clc;
+disp('Example 7.33, Page No. = 7.75')
+// Given Data
+E = 1000;// Amplitude of fundamental emf (in V)
+R = 10;// Reactance per phase (in ohm)
+// Calculation of the rms line voltage and circulating current
+Eph1 = E/2^(1/2);// Rms value of fundamental emf per phase
+Eph3 = 0.2*Eph1;// Rms value of 3rd harmonic component of phase voltage (in V) Given 20%
+Eph5 = 0.1*Eph1;// Rms value of 5th harmonic component of phase voltage (in V) Given 10%
+Eph = (Eph1*Eph1+Eph5*Eph5)^(1/2);// Phase voltage considering no 3rd harmonic
+disp(3^(1/2)*Eph,'(a) rms line voltage when star connected (V)=');
+disp(Eph,'(b) rms line voltage when delta connected (V)=');
+I_circulating = 3*Eph3/(3*3*10);// Circulating current taking reactance corresponding to 3rd harmonic
+disp(I_circulating,'Circulating current (ampere)=');
+//in book answers are 1230.8 V, 710.6 v and 4.71 ampere respectively. The answers vary due to round off error
diff --git a/3681/CH7/EX7.41/Ans7_41.PNG b/3681/CH7/EX7.41/Ans7_41.PNG Binary files differnew file mode 100644 index 000000000..9ca2169b9 --- /dev/null +++ b/3681/CH7/EX7.41/Ans7_41.PNG diff --git a/3681/CH7/EX7.41/Ex7_41.sce b/3681/CH7/EX7.41/Ex7_41.sce new file mode 100644 index 000000000..98bc28ce9 --- /dev/null +++ b/3681/CH7/EX7.41/Ex7_41.sce @@ -0,0 +1,35 @@ +// Calculating the eddy current loss ratio and average loss ratio and critical depth for minimum loss
+clc;
+disp('Example 7.41, Page No. = 7.104')
+// Given Data
+Ws = 20;// Slot width (in mm)
+b = 14;// Width of copper conductors (in mm)
+h = 8;// Depth of copper conductors (in mm)
+f = 50// Frequency (in Hz)
+N = 5;// Number of layers
+// Calculation of eddy loss factor for different layers
+a = 100*(b/Ws)^(1/2);
+ah = a*h*10^(-3);
+ah4 = ah^(4);
+Ke1 = 1;// 1st layer
+Ke2 = 1+ah4*2*(2-1)/3;// 2nd layer
+Ke3 = 1+ah4*3*(3-1)/3;// 3rd layer
+Ke4 = 1+ah4*4*(4-1)/3;// 4th layer
+Ke5 = 1+ah4*5*(5-1)/3;// 5th layer
+disp(Ke1,'1st layer Ke1 =');
+disp(Ke2,'2nd layer Ke2 =');
+disp(Ke3,'3rd layer Ke3 =');
+disp(Ke4,'4th layer Ke4 =');
+disp(Ke5,'5th layer Ke5 =');
+// Calculation of average eddy current loss factor for all the five layers
+Ke_av = 1+ah4*N*N/9;
+disp(Ke_av,'Average eddy current loss factor for all the five layers =');
+// Calculation of critical depth for minimum loss
+hc = 1/(a*(3*N*N/9)^(1/4))*1000;// Critical depth (in mm)
+disp(hc,'Critical depth (mm)=');
+// Calculation of average eddy current loss factor for all the five layers for this critical depth
+ahc = a*hc*10^(-3);
+ahc4 = ahc^(4);
+Ke_av = 1+ahc4*N*N/9;
+disp(Ke_av,'Average eddy current loss factor for this critical depth=');
+//in book answers are 1, 1.13, 1.4, 1.8, 2.33, 1.55, 7 mm and 1.33 respectively. The answers vary due to round off error
|