diff options
Diffstat (limited to '3638/CH7/EX7.1')
-rw-r--r-- | 3638/CH7/EX7.1/Ex7_1.jpg | bin | 0 -> 99959 bytes | |||
-rw-r--r-- | 3638/CH7/EX7.1/Ex7_1.sce | 56 |
2 files changed, 56 insertions, 0 deletions
diff --git a/3638/CH7/EX7.1/Ex7_1.jpg b/3638/CH7/EX7.1/Ex7_1.jpg Binary files differnew file mode 100644 index 000000000..9a097defd --- /dev/null +++ b/3638/CH7/EX7.1/Ex7_1.jpg diff --git a/3638/CH7/EX7.1/Ex7_1.sce b/3638/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..afac2c184 --- /dev/null +++ b/3638/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,56 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 7.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n1=1.503;//refractive index of film
+n2=1.500;//refractive index of cover
+d=4e-6;//thickness of film in m
+
+
+//Case(1)
+lambda0=1e-6;//wavelength in m
+k0=2*(%pi)/lambda0;//free space wave number in rad/m
+funcprot(0);//To avoid warning message when function is redefined
+mprintf("\n For 1st value of lambda:");
+V=k0*d*sqrt((n1^2)-(n2^2));//dimensionless waveguide parameter
+mprintf("\n V=%f",V);//The answers vary due to round off error
+
+//To find Xi for symmetric TE mode
+deff('t=f(Xi)','t=V/2*cos(Xi)-Xi');//Rearranging the terms of eqn for symmetric TE modes i.e. 'ξtanξ=((V/2)^2-ξ^2)', we get 'ξ=V/2*cos(ξ)'
+Xi0=0;//Starting value of Xi
+Xi=fsolve(Xi0,f);//Root of eqn 't=0'
+mprintf("\n For symmetric mode ξ=%f",Xi);//The answers vary due to round off error
+b=1-(Xi^2)/(V^2/4);//dimensionless propagation constant
+mprintf("\n b=%f",b);
+B=sqrt(b*((n1^2)-(n2^2))+(n2^2));
+mprintf("\nBeta/k0=%f",B);//The answers vary due to round off error
+
+
+//Case(2)
+lambda0=0.5e-6;//wavelength in m
+k0=2*(%pi)/lambda0;//phase constant in rad/m
+mprintf("\n\n For 2nd value of lambda:");
+V=k0*d*sqrt((n1^2)-(n2^2))//dimensionless waveguide parameter
+mprintf("\n V=%f ",V);//The answers vary due to round off error
+
+//To find Xi for symmetric TE mode
+deff('t=f(Xi)','t=V/2*cos(Xi)-Xi');//Rearranging the terms of eqn for symmetric TE modes i.e. 'ξtanξ=((V/2)^2-ξ^2)^(1/2)', we get 'ξ=V/2*cos(ξ)'
+Xi0=0;//Starting value of Xi
+Xi=fsolve(Xi0,f);//Root of eqn 't=0'
+mprintf("\n For symmetric mode ξ=%f",Xi);//The answers vary due to round off error
+b=1-(Xi^2)/(V^2/4);//dimensionless propagation constant
+mprintf("\n b=%f",b);
+B=sqrt(b*((n1^2)-(n2^2))+(n2^2));
+mprintf("\nBeta/k0=%f",B);
+//To find Xi for antisymmetric TE mode
+deff('t=f(Xi)','t=V/2*sin(Xi)-Xi');//Rearranging the terms of eqn for antisymmetric TE modes i.e. '-ξcotξ=((V/2)^2-ξ^2)^(1/2)', we get 'ξ=V/2*sin(ξ)'
+Xi0=1;//Starting value of Xi
+Xi=fsolve(Xi0,f);//Root of eqn 't=0'
+mprintf("\n For antisymmetric mode ξ=%f",Xi);//The answers vary due to round off error
+b=1-(Xi^2)/(V^2/4);//dimensionless propagation constant
+mprintf("\n b=%f",b);
+B=sqrt(b*((n1^2)-(n2^2))+(n2^2));
+mprintf("\nBeta/k0=%f",B);
|