diff options
Diffstat (limited to '3638/CH17')
-rw-r--r-- | 3638/CH17/EX17.1/Ex17_1.jpg | bin | 0 -> 99476 bytes | |||
-rw-r--r-- | 3638/CH17/EX17.1/Ex17_1.sce | 45 | ||||
-rw-r--r-- | 3638/CH17/EX17.2/Ex17_2.jpg | bin | 0 -> 106657 bytes | |||
-rw-r--r-- | 3638/CH17/EX17.2/Ex17_2.sce | 13 | ||||
-rw-r--r-- | 3638/CH17/EX17.3/Ex17_3.jpg | bin | 0 -> 101159 bytes | |||
-rw-r--r-- | 3638/CH17/EX17.3/Ex17_3.sce | 15 | ||||
-rw-r--r-- | 3638/CH17/EX17.4/Ex17_4.jpg | bin | 0 -> 76698 bytes | |||
-rw-r--r-- | 3638/CH17/EX17.4/Ex17_4.sce | 26 | ||||
-rw-r--r-- | 3638/CH17/EX17.5/Ex17_5.jpg | bin | 0 -> 92242 bytes | |||
-rw-r--r-- | 3638/CH17/EX17.5/Ex17_5.sce | 26 | ||||
-rw-r--r-- | 3638/CH17/EX17.6/Ex17_6.jpg | bin | 0 -> 77897 bytes | |||
-rw-r--r-- | 3638/CH17/EX17.6/Ex17_6.sce | 27 | ||||
-rw-r--r-- | 3638/CH17/EX17.7/Ex17_7.jpg | bin | 0 -> 75516 bytes | |||
-rw-r--r-- | 3638/CH17/EX17.7/Ex17_7.sce | 27 | ||||
-rw-r--r-- | 3638/CH17/EX17.8/Ex17_8.jpg | bin | 0 -> 76012 bytes | |||
-rw-r--r-- | 3638/CH17/EX17.8/Ex17_8.sce | 30 | ||||
-rw-r--r-- | 3638/CH17/EX17.9/Ex17_9.jpg | bin | 0 -> 90006 bytes | |||
-rw-r--r-- | 3638/CH17/EX17.9/Ex17_9.sce | 22 |
18 files changed, 231 insertions, 0 deletions
diff --git a/3638/CH17/EX17.1/Ex17_1.jpg b/3638/CH17/EX17.1/Ex17_1.jpg Binary files differnew file mode 100644 index 000000000..75caf7041 --- /dev/null +++ b/3638/CH17/EX17.1/Ex17_1.jpg diff --git a/3638/CH17/EX17.1/Ex17_1.sce b/3638/CH17/EX17.1/Ex17_1.sce new file mode 100644 index 000000000..7fa24ba5d --- /dev/null +++ b/3638/CH17/EX17.1/Ex17_1.sce @@ -0,0 +1,45 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n1=1.4532;//refractive index of core
+n2=1.45;//refractive index of cladding
+a=5e-6;//fiber core radius in m
+d=12e-6;//Distance between the fiber axes in m
+dbar=d/a;//Ratio of distance between fiber axes to the core radius
+delta=((n1)^2-(n2)^2)/((n1)^2);//Dimensionless quantity
+
+//Case (i):
+lambda0=1.3e-6;//Free space wavelength in m
+k0=2*%pi/lambda0;//free space wave number in rad/m
+V=k0*a*sqrt((n1^2)-(n2^2));//dimensionless waveguide parameter
+//The approximate expression for k consists of constants A, B and C
+A=5.2789-3.663*V+0.3841*(V^2);//Expression for constant A in terms of 'V'
+B=-0.7769+1.2252*V-0.0152*(V^2);//Expression for constant B in terms of 'V'
+C=-0.0175-0.0064*V-0.0009*(V^2);//Expression for constant C in terms of 'V'
+k=(%pi/(2*a))*sqrt(delta)*exp(-(A+B*dbar+C*(dbar)^2));//Expression for Coupling Coefficient in m^(-1)
+mprintf("\n For lambda=1.3 um:");
+mprintf("\n k=%f mm^(-1)",k/1e3);//Dividing by 10^3 to conevert into mm^(-1)
+//The answers vary due to round off error
+Lc=%pi/(2*k);//Corresponding coupling length in m
+mprintf("\n Lc =%.2f mm",Lc/1e-3);//Dividing by 10^(-3) to convert into mm
+P2=(sin(k*Lc/2))^2;//The coupled power at given wavelength
+mprintf("\n P2=%.2f",P2);
+
+//Case (ii):
+lambda0=1.35e-6;//Free space wavelength in m
+k0=2*%pi/lambda0;//free space wave number in rad/m
+V=k0*a*sqrt((n1^2)-(n2^2));//dimensionless waveguide parameter
+//The approximate expression for k consists of constants A, B and C
+A=5.2789-3.663*V+0.3841*(V^2);//Expression for constant A in terms of 'V'
+B=-0.7769+1.2252*V-0.0152*(V^2);//Expression for constant B in terms of 'V'
+C=-0.0175-0.0064*V-0.0009*(V^2);//Expression for constant C in terms of 'V'
+k=(%pi/(2*a))*sqrt(delta)*exp(-(A+B*dbar+C*(dbar)^2));//Expression for Coupling Coefficient in m^(-1)
+mprintf("\n For lambda=1.35 um:");
+mprintf("\n k=%f mm^(-1)",k/1e3);//Dividing by 10^3 to conevert into mm^(-1)
+//The answers vary due to round off error
+P2=(sin(k*Lc/2))^2;//The coupled power at given wavelength
+mprintf("\n P2=%.2f",P2);//The answers vary due to round off error
diff --git a/3638/CH17/EX17.2/Ex17_2.jpg b/3638/CH17/EX17.2/Ex17_2.jpg Binary files differnew file mode 100644 index 000000000..f48f2b8d1 --- /dev/null +++ b/3638/CH17/EX17.2/Ex17_2.jpg diff --git a/3638/CH17/EX17.2/Ex17_2.sce b/3638/CH17/EX17.2/Ex17_2.sce new file mode 100644 index 000000000..adb35ce8e --- /dev/null +++ b/3638/CH17/EX17.2/Ex17_2.sce @@ -0,0 +1,13 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+b=62.5e-6;//Outer radius of silica fiber in m
+R=30e-3;//Radius of the circular loop formed by the fiber in m
+lambda=633e-9;//Wavelength in m
+C=0.133;//Value of constant C for a silica fiber at 633 nm
+Deltaneff=-C*(b/R)^2;//The Corresponding dimensionless birefringence
+mprintf("\n The birefringence of the given fiber = %.2e",Deltaneff);//The negative sign indicates that the polarization of the slow wave is perpendicular to the optic axis
diff --git a/3638/CH17/EX17.3/Ex17_3.jpg b/3638/CH17/EX17.3/Ex17_3.jpg Binary files differnew file mode 100644 index 000000000..5c51c9e6f --- /dev/null +++ b/3638/CH17/EX17.3/Ex17_3.jpg diff --git a/3638/CH17/EX17.3/Ex17_3.sce b/3638/CH17/EX17.3/Ex17_3.sce new file mode 100644 index 000000000..1790eb175 --- /dev/null +++ b/3638/CH17/EX17.3/Ex17_3.sce @@ -0,0 +1,15 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=633e-9;//Wavelength in m
+b=62.5e-6;//Outer radius of silica fiber in m
+N=1;//Number of loops formed by the fiber
+C=0.133;//Value of constant C for a silica fiber at 633 nm
+
+R=8*%pi*C*(b^2)*N/lambda0;//Radius of the circular loop corresponding to a quarter plate formed by the fiber in m
+mprintf("\n R= %.2f cm",R/1e-2);//Division by 10^(-2) to convert into cm
+//The answers vary due to round off error
diff --git a/3638/CH17/EX17.4/Ex17_4.jpg b/3638/CH17/EX17.4/Ex17_4.jpg Binary files differnew file mode 100644 index 000000000..1ee5811ba --- /dev/null +++ b/3638/CH17/EX17.4/Ex17_4.jpg diff --git a/3638/CH17/EX17.4/Ex17_4.sce b/3638/CH17/EX17.4/Ex17_4.sce new file mode 100644 index 000000000..6d076a109 --- /dev/null +++ b/3638/CH17/EX17.4/Ex17_4.sce @@ -0,0 +1,26 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n2=1.45;//refractive imdex of cladding
+NA=0.1;//Numerical aperture of the fiber
+a=3e-6;//radius of core in m
+n=2*%pi*a*NA;//numerator of the corresponding V number
+
+//For cutoff wavelength:
+V=2.4048;
+//Since V=n/lambda0
+lambdac=n/V;//cutoff wavelength of single mode fiber in m
+mprintf("\n The cutoff wavelength is %.3f um",lambdac/1e-6);//Division by 10^(-6) to convert into um
+
+//Now, For lambdaB=850 nm:
+lambdaB=850e-9;//Bragg wavelength in m
+neff=1.4517;//Corresponding value of effective index in LP01 mode
+
+//Let A be grating period
+A=lambdaB/(2*neff);//Grating period in m
+mprintf("\n Grating period= %.3f um",A/1e-6);//Division by 10^(-6) to convert into um
+//The answers vary due to round off error
diff --git a/3638/CH17/EX17.5/Ex17_5.jpg b/3638/CH17/EX17.5/Ex17_5.jpg Binary files differnew file mode 100644 index 000000000..2d9c99b20 --- /dev/null +++ b/3638/CH17/EX17.5/Ex17_5.jpg diff --git a/3638/CH17/EX17.5/Ex17_5.sce b/3638/CH17/EX17.5/Ex17_5.sce new file mode 100644 index 000000000..682e5a5c8 --- /dev/null +++ b/3638/CH17/EX17.5/Ex17_5.sce @@ -0,0 +1,26 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Since the reflectivity of fiber is 90%,
+R=0.9;//Reflection coefficient of fiber
+L=25e-3;//Length of fiber in m
+lambdaB=800e-9;//Bragg wavelength in m
+neff=1.4517;//Corresponding value of effective index in LP01 mode
+I=0.5;//Transverse overlap integral of modal distribution
+
+//Now, (tanh(k*L))^2=R
+//Rearranging terms, we get:
+k=atanh(sqrt(R))/L;//Corresponding coupling coefficient in m^(-1)
+mprintf("\n k=%.3f mm^(-1)",k/1e3);//Dividing by 10^3 to convert into mm^(-1)
+
+//Rearranging terms of expression k=%pi*Deltan*I/lambdaB
+Deltan=k*lambdaB/(%pi*I);//Change in refractive index
+mprintf("\n Deltan=%.2e",Deltan);//Unitless quantity
+//The answers vary due to round off error
+
+DeltaLambda=lambdaB^2/(%pi*neff*L)*sqrt((k*L)^2+(%pi)^2);//Corresponding bandwidth in m
+mprintf("\n DeltaLambda=%.2f nm",DeltaLambda/1e-9);//Division by 10^(-9) to convert into nm
diff --git a/3638/CH17/EX17.6/Ex17_6.jpg b/3638/CH17/EX17.6/Ex17_6.jpg Binary files differnew file mode 100644 index 000000000..812b375a3 --- /dev/null +++ b/3638/CH17/EX17.6/Ex17_6.jpg diff --git a/3638/CH17/EX17.6/Ex17_6.sce b/3638/CH17/EX17.6/Ex17_6.sce new file mode 100644 index 000000000..521c0b77e --- /dev/null +++ b/3638/CH17/EX17.6/Ex17_6.sce @@ -0,0 +1,27 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Since the reflectivity of fiber is 90%,
+R=0.9;//Reflection coefficient of fiber
+L=10e-3;//Length of fiber in m
+lambdaB=800e-9;//Bragg wavelength in m
+neff=1.4517;//Corresponding value of effective index in LP01 mode
+I=0.5;//Transverse overlap integral of modal distribution
+
+//Now, (tanh(k*L))^2=R
+//Rearranging terms, we get:
+k=atanh(sqrt(R))/L;//Corresponding coupling coefficient in m^(-1)
+mprintf("\n k=%.3f mm^(-1)",k/1e3);//Dividing by 10^3 to convert into mm^(-1)
+//The answers vary due to round off error
+
+//Rearranging terms of expression k=%pi*Deltan*I/lambdaB
+Deltan=k*lambdaB/(%pi*I);//Change in refractive index
+mprintf("\n Deltan=%.2e",Deltan);//Unitless quantity
+//The answers vary due to round off error
+
+DeltaLambda=lambdaB^2/(%pi*neff*L)*sqrt((k*L)^2+(%pi)^2);//Corresponding bandwidth in m
+mprintf("\n DeltaLambda=%.2f nm",DeltaLambda/1e-9);//Division by 10^(-9) to convert into nm
diff --git a/3638/CH17/EX17.7/Ex17_7.jpg b/3638/CH17/EX17.7/Ex17_7.jpg Binary files differnew file mode 100644 index 000000000..815d00906 --- /dev/null +++ b/3638/CH17/EX17.7/Ex17_7.jpg diff --git a/3638/CH17/EX17.7/Ex17_7.sce b/3638/CH17/EX17.7/Ex17_7.sce new file mode 100644 index 000000000..7ce8f9574 --- /dev/null +++ b/3638/CH17/EX17.7/Ex17_7.sce @@ -0,0 +1,27 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Since the peak reflectivity of fiber is 0.93%,
+R=0.93;//Reflection coefficient of fiber
+L=4.8e-3;//Length of fiber in m
+lambdaB=1532.1e-9;//Bragg wavelength in m
+neff=1.4517;//Corresponding value of effective index in LP01 mode
+I=0.5;//Transverse overlap integral of modal distribution
+
+//Now, (tanh(k*L))^2=R
+//Rearranging terms, we get:
+k=atanh(sqrt(R))/L;//Corresponding coupling coefficient in m^(-1)
+mprintf("\n k=%.3f mm^(-1)",k/1e3);//Dividing by 10^3 to convert into mm^(-1)
+//The answers vary due to round off error
+
+//Rearranging terms of expression k=%pi*Deltan*I/lambdaB
+Deltaneff=k*lambdaB/(%pi);//Change in effective refractive index
+mprintf("\n Deltaneff=%.2e",Deltaneff);//Unitless quantity
+//The answers vary due to round off error
+
+DeltaLambda=lambdaB^2/(%pi*neff*L)*sqrt((k*L)^2+(%pi)^2);//Corresponding bandwidth in m
+mprintf("\n DeltaLambda=%.2f nm",DeltaLambda/1e-9);//Division by 10^(-9) to convert into nm
diff --git a/3638/CH17/EX17.8/Ex17_8.jpg b/3638/CH17/EX17.8/Ex17_8.jpg Binary files differnew file mode 100644 index 000000000..c36e204a0 --- /dev/null +++ b/3638/CH17/EX17.8/Ex17_8.jpg diff --git a/3638/CH17/EX17.8/Ex17_8.sce b/3638/CH17/EX17.8/Ex17_8.sce new file mode 100644 index 000000000..a302e2e82 --- /dev/null +++ b/3638/CH17/EX17.8/Ex17_8.sce @@ -0,0 +1,30 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Since the reflectivity of fiber is 99%,
+R=0.99;//Reflection coefficient of fiber
+lambdaB=1550e-9;//Bragg wavelength in m
+neff=1.45;//Corresponding value of effective index in LP01 mode
+DeltaLambda=1e-9;//Bandwidth of reflection spectrum in m
+I=0.75;//Typical value of transverse overlap integral of modal distribution
+
+//Now, (tanh(k*L))^2=R
+//Rearranging terms, we get: k*L=atanh(sqrt(R))
+//Let m=k*L
+m=atanh(sqrt(R));
+
+//Rearranging terms of expression DeltaLambda=lambdaB^2/(%pi*neff*L)*sqrt((k*L)^2+(%pi)^2) , we get
+L=lambdaB^2/(%pi*neff*DeltaLambda)*sqrt(m^2+(%pi)^2)//Since m=k*L
+//Length of fiber in m
+mprintf("\n L=%.2f mm",L/1e-3);//Division by 10^(-3) to convert into mm
+
+//Rearranging terms of m=k*L, we get:
+k=m/L;//Corresponding coupling coefficient in m^(-1)
+
+//Rearranging terms of expression k=%pi*Deltan*I/lambdaB
+Deltan=k*lambdaB/(%pi*I);//Change in refractive index
+mprintf("\n Deltan=%.2e",Deltan);//Unitless quantity
diff --git a/3638/CH17/EX17.9/Ex17_9.jpg b/3638/CH17/EX17.9/Ex17_9.jpg Binary files differnew file mode 100644 index 000000000..bab197c7f --- /dev/null +++ b/3638/CH17/EX17.9/Ex17_9.jpg diff --git a/3638/CH17/EX17.9/Ex17_9.sce b/3638/CH17/EX17.9/Ex17_9.sce new file mode 100644 index 000000000..5892a8980 --- /dev/null +++ b/3638/CH17/EX17.9/Ex17_9.sce @@ -0,0 +1,22 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.9
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+a=5e-6;//Fiber core radius in m
+NA=0.09;//Numerical aperture of the fiber
+lambda0=1.3e-6;//Wavelength of radiation to be reflected from a Bragg grating
+
+V=2*%pi*a*NA/lambda0;//Corrseponding dimensionless V number
+mprintf("\n V=%f",V);//The answers vary due to round off error
+
+//Since W0=(0.65+1.619/V^(3/2)+2.879/V^6)*a , where W0 is the mode spot size in m
+//Let W0=m*a , where m=0.65+1.619/V^(3/2)+2.879/V^6
+m=0.65+1.619/V^(3/2)+2.879/V^6;
+mprintf("\n W0/a=%f",m);//The answers vary due to round off error
+
+//Given that I=1-exp(-2*(a/W0)^2);
+I=1-exp(-2/m^2);//From the assumption that m=W0/a
+mprintf("\n I=%.2f",I);
|