summaryrefslogtreecommitdiff
path: root/3594/CH15
diff options
context:
space:
mode:
Diffstat (limited to '3594/CH15')
-rw-r--r--3594/CH15/EX15.1/Ex15_1.sce21
-rw-r--r--3594/CH15/EX15.11/Ex15_11.sce28
-rw-r--r--3594/CH15/EX15.2/Ex15_2.sce24
-rw-r--r--3594/CH15/EX15.3/Ex15_3.sce10
-rw-r--r--3594/CH15/EX15.4/Ex15_4.sce14
-rw-r--r--3594/CH15/EX15.5/Ex15_5.sce18
-rw-r--r--3594/CH15/EX15.6/Ex15_6.sce18
-rw-r--r--3594/CH15/EX15.7/Ex15_7.sce27
-rw-r--r--3594/CH15/EX15.8/Ex15_8.sce24
-rw-r--r--3594/CH15/EX15.9/Ex15_9.sce25
10 files changed, 209 insertions, 0 deletions
diff --git a/3594/CH15/EX15.1/Ex15_1.sce b/3594/CH15/EX15.1/Ex15_1.sce
new file mode 100644
index 000000000..e983bc7c9
--- /dev/null
+++ b/3594/CH15/EX15.1/Ex15_1.sce
@@ -0,0 +1,21 @@
+//to find the frequencies of the free longitudinal, transverse and torsional vibrations
+clc
+//given
+W=.3*2240//lb
+l=36//in
+D=3//in
+k=15//in
+A=%pi*(D/2)^2
+E=30*10^6//youngs modulus
+C=12*10^6
+g=32.2//ft/s^2
+d=W*l/(A*E)
+Fl=187.8/(d)^(1/2)
+I=%pi*(d/2)^4
+d1=W*(l^3)*64/(3*E*%pi*(3^4))
+Ft=187.8/(d1)^(1/2)
+j=%pi*3^4/32
+q=C*j/l
+Ftor=(1/(2*%pi))*(q*g*12/(W*k^2))^(1/2)
+F1=Ftor*60
+printf("\na) Frequency of Longitudinal vibrations = %.f per min\nb) Frequency of the transverse vibrations = %.f per min\nc) Frequency of the torsional vibration = %.f per min",Fl,Ft,F1)
diff --git a/3594/CH15/EX15.11/Ex15_11.sce b/3594/CH15/EX15.11/Ex15_11.sce
new file mode 100644
index 000000000..9be8a056d
--- /dev/null
+++ b/3594/CH15/EX15.11/Ex15_11.sce
@@ -0,0 +1,28 @@
+//to find the natural frequencies of the torsional vibration of the system when inertia is neglected and when it is taken into account
+clc
+//given
+g=32.3//ft/s^2
+l2=25.5//in
+d1=2.75//in
+d2=3.5//in
+C=12*10^6//modulus of rigidity
+G=1/0.6//given speed ratio
+Ib=54//lb in^2
+Ic=850//lb in^2
+Id=50000//lb in^2
+Id1=Id/G^2//15.62
+Ia=1500//lb in^2
+la=Id1/(Id1+Ia)*66.5
+J=%pi*d1^4/32
+q=C*J/la//torsional stiffness
+n=(1/(2*%pi))*(q*g*12/Ia)^(1/2)
+nf=n*60//for minutes
+//case b)
+Ib1=Ib+Ic/(G^2)
+a=63.15//in; distance of the node from rotor A (given)
+b=3.661//in; distance of the node from rotor A (given)
+N1=n*(la/a)^(1/2)
+N2=n*(la/b)^(1/2)
+N1f=N1*60//for minutes
+N2f=N2*60//for minutes
+printf("\na) The frequency of torsional vibrations n = %.1f per sec or %.f per min\nb) The fundamental frquency = %.1f per sec or %.f per min\n and the two node frequency = %.f per sec or %.f per min",n,nf,N1,N1f,N2,N2f)
diff --git a/3594/CH15/EX15.2/Ex15_2.sce b/3594/CH15/EX15.2/Ex15_2.sce
new file mode 100644
index 000000000..dc8e933c9
--- /dev/null
+++ b/3594/CH15/EX15.2/Ex15_2.sce
@@ -0,0 +1,24 @@
+//To find the natural frequencies of the longitudinal, transverse and torsional vibration of the system
+clc
+//given
+l1=3//ft
+l2=2//ft
+l=l1+l2//ft
+W=.5*2240//lb
+k=20//in
+d=2//in
+Wa=2*W/5
+E=30*10^6
+A=%pi*(d/2)^2
+d1=Wa*l1*12/(A*E)
+N1=187.8/(d1)^(1/2)
+I=%pi*(d)^4/64
+d2=W*(l1*12)^3*(l2*12)^3/(3*E*(l*12)^3*I)
+N2=187.8/(d2)^(1/2)
+C=12*10^6//given
+g=32.2//given
+J=%pi*d^4/32
+q=C*J*((1/(l1*12))+(1/(l2*12)))
+n=(1/(2*%pi))*(q*g*12/(W*k^2))^(1/2)
+N3=n*60
+printf("\na)Longitudinal vibration = %.f per min\nb)Transverse Vibration = %.f per min\nc)Torsional Vibration = %.f per min\n",N1,N2,N3)
diff --git a/3594/CH15/EX15.3/Ex15_3.sce b/3594/CH15/EX15.3/Ex15_3.sce
new file mode 100644
index 000000000..03cf93309
--- /dev/null
+++ b/3594/CH15/EX15.3/Ex15_3.sce
@@ -0,0 +1,10 @@
+//to find frequency of the natural transverse vibration
+clc
+//given
+l=10//ft
+d=4//in
+E=30*10^6//youngs modulus
+d1=0.0882//inches; maximum deflection as shown in the figure
+N=207/(d1)^(1/2)//From 15.20
+printf("\nFrequency of natural transverse vibration = %.f per min",N)
+
diff --git a/3594/CH15/EX15.4/Ex15_4.sce b/3594/CH15/EX15.4/Ex15_4.sce
new file mode 100644
index 000000000..517438f67
--- /dev/null
+++ b/3594/CH15/EX15.4/Ex15_4.sce
@@ -0,0 +1,14 @@
+//To find the resistance offered by the dashpot
+clc
+//given
+m=50//lb
+k=100//lb/in
+g=32.2//ft/s
+d=m/k//static deflection
+n=(1/(2*%pi))*(g*12/d)^(1/2)
+//part 2
+b=g*12/d
+a=(b/20.79)^(1/2)
+nd=(1/(2*%pi))*((b-(a/2)^2))^(1/2)
+A=nd/n
+printf("\nFrequency of free vibrations = %.3f per sec\nFrequency of damped vibrations = %.3f per sec \nThe ratio of the frequencies of damped and free vibrationsis %.3f \n",n,nd,A)
diff --git a/3594/CH15/EX15.5/Ex15_5.sce b/3594/CH15/EX15.5/Ex15_5.sce
new file mode 100644
index 000000000..6c525fa5b
--- /dev/null
+++ b/3594/CH15/EX15.5/Ex15_5.sce
@@ -0,0 +1,18 @@
+//To find the ratio nd/n
+clc
+//given
+//damping torque is directly proposrtional to the angular velocity
+C=12*10^6//Modulus of rigidity
+l=3//ft
+d=1//in
+g=32.2//ft/s^2
+I=500//lb ft^2 ; moment of inertia
+J=%pi*d^4/32
+q=C*J/(l*12)
+n=(1/(2*%pi))*(q*g*12/(I*12^2))^(1/2)
+//part 2
+b1=(q*g*12/(I*12^2))
+a1=(b1/10.15)^(1/2)//by reducing equation 15.28
+nd=(1/(2*%pi))*(b1-(a1/2)^2)^(1/2)
+A=nd/n
+printf("\nThe frequency of natural vibration = %.2f per sec\nThe frequency of damped vibration = %.2f per sec\nThe ratio nd/n = %.3f\n",n,nd,A)
diff --git a/3594/CH15/EX15.6/Ex15_6.sce b/3594/CH15/EX15.6/Ex15_6.sce
new file mode 100644
index 000000000..4e62ef86d
--- /dev/null
+++ b/3594/CH15/EX15.6/Ex15_6.sce
@@ -0,0 +1,18 @@
+//to find the amplitude if the period of the applied force coincided with the natural period of vibration of the system
+clc
+//given
+m=20//lb
+k=50//lb/in
+F=30//lb
+w=50//sec^-1
+g=32.2//ft/s^2
+d=m/k
+x=F/k//extension of the spring
+b=g*12/d
+a=(b/30.02)^(1/2)//from equation 15.28
+D=1/((1-w^2/b)^2+a^2*w^2/b^2)^(1/2)
+Af=D*x//amplitude of forced vibration
+D=(b/a^2)^(1/2)//At resonance
+A=D*x//amplitude at resonance
+printf("\nAmplitude of forced vibrations = %.3f in\nAmplitude of the forced vibrations at resonance = %.2f in",Af,A)
+
diff --git a/3594/CH15/EX15.7/Ex15_7.sce b/3594/CH15/EX15.7/Ex15_7.sce
new file mode 100644
index 000000000..840abf0f0
--- /dev/null
+++ b/3594/CH15/EX15.7/Ex15_7.sce
@@ -0,0 +1,27 @@
+//to find the fraction of the applied force transmitted at 1200 rpm and the amplitude of forced vibrations of the machines at resonance
+clc
+//given
+e=1/30
+n=1200//rpm
+w=%pi*n/30
+m=3//lb
+g=32.2//ft/s^2
+stroke=3.5//in
+r=stroke/2
+k=(1+1/e)^(1/2)//nf/n=k
+d=(k/187.7)^2
+W=200//lb ; given
+s=W/d//combined stiffness
+p=1/14.1//As a^2/b=1/198
+T=((1+p^2*k^2/((1-k^2)^2+p^2*k^2)))^(1/2)//actual value of transmissibility
+F=(m/g)*w^2*r/12//maximum unbalanced force transmitted on the machine
+Fmax=F*T//maximum force transmitted to the foundation
+//case b
+E=((1+p^2)/(p^2))^(1/2)
+Nreso=215.5//rpm
+Fub=F*(Nreso/n)^2
+Ftmax=E*Fub
+D=E//dynamic magnifier
+del=Fub/152//static deflection
+A=del*D
+printf("\na) Maximum force transmitted at 1200 rpm = %.f lb\nb) The amplitude of the forced vibrations of the machine at resonance = %.3f in\n Force transmitted = %.f lb\n",Fmax,A,Fub)
diff --git a/3594/CH15/EX15.8/Ex15_8.sce b/3594/CH15/EX15.8/Ex15_8.sce
new file mode 100644
index 000000000..a7b64e5a3
--- /dev/null
+++ b/3594/CH15/EX15.8/Ex15_8.sce
@@ -0,0 +1,24 @@
+//To find the frequency of the natural torsional oscillations of the system
+clc
+//given
+l1=11//in
+l2=10//in
+l3=15//in
+l4=4//in
+l5=10//in
+d1=3//in
+d2=5//in
+d3=3.5//in
+d4=7//in
+d5=5//in
+I1=1500//lb ft^2
+I2=1000//lb ft^2
+leq=3//in from 15.49
+g=32.2//ft/s^2
+C=12*10^6
+J=%pi*leq^4/32
+l=l1+l2*(leq/d2)^4+l3*(leq/d3)^4+l4*(leq/d4)^4+l5*(leq/d5)^4
+la=I2*l/(I1+I2)
+qa=C*J/la
+n=(1/(2*%pi))*(qa*g*12/(I1*12^2))^(1/2)
+printf("\nThe frequency of the natural torsional oscillation of the system = %.1f per sec",n)
diff --git a/3594/CH15/EX15.9/Ex15_9.sce b/3594/CH15/EX15.9/Ex15_9.sce
new file mode 100644
index 000000000..84df93a92
--- /dev/null
+++ b/3594/CH15/EX15.9/Ex15_9.sce
@@ -0,0 +1,25 @@
+//To find the frequencies of the free torsional vibrations of the system
+clc
+//given
+Ia=2.5//ton ft^2
+Ib=7.5//ton ft^2
+Ic=3//ton ft^2
+g=32.2//ft/s^2
+AB=9.5//ft
+BC=25//ft
+d=8.5//in
+C=11.8*10^6//lb/in^2
+k=Ic/Ia//la/lc=k
+lc1=(25.6+(25.6^2-4*114.1)^(1/2))/2//from 1 and 2 , reducing using quadratic formula
+lc2=(25.6-(25.6^2-4*114.1)^(1/2))/2//from 1 and 2 , reducing using quadratic formula
+la1=lc1*k
+la2=lc2*k
+J=%pi*d^4/32
+q=C*J/(lc1*12)//torsional stiffness
+IC=Ic*2240*12^2/(g*12)//moment of inertia
+nc=(1/(2*%pi))*(q/IC)^(1/2)//fundamental frequency of vibration
+a1=nc*60
+a=floor(a1)
+n=16*(lc1/lc2)^(1/2)
+b=n*60
+printf("\nFundamental frequency of vibration = %.f per min\nTwo node frequency = %.f per min\n",a,b)