summaryrefslogtreecommitdiff
path: root/3588/CH3/EX3.3/EX3_3.sce
diff options
context:
space:
mode:
Diffstat (limited to '3588/CH3/EX3.3/EX3_3.sce')
-rw-r--r--3588/CH3/EX3.3/EX3_3.sce45
1 files changed, 45 insertions, 0 deletions
diff --git a/3588/CH3/EX3.3/EX3_3.sce b/3588/CH3/EX3.3/EX3_3.sce
new file mode 100644
index 000000000..8691ebbd3
--- /dev/null
+++ b/3588/CH3/EX3.3/EX3_3.sce
@@ -0,0 +1,45 @@
+//Clearing Console
+clc
+clear
+
+//First, note that the 3-D truss with four nodes has 12 possible displacements. However,
+//since nodes 1–3 are fixed, nine of the possible displacements are known to be zero. There-
+//fore, we need assemble only a portion of the system stiffness matrix to solve for the three
+//unknown displacements.
+
+//Calculating Elemental Stiffness Matrices
+for i=1:3
+ if i==1 then
+ cx=0.8
+ cy=0
+ cz=-0.6
+ K1=3*10^5*[cx^2 cx*cy cx*cz -cx^2 -cx*cy -cx*cz;cx*cy cy^2 cy*cz -cx*cy -cy^2 -cy*cz;cx*cz cy*cz cz^2 -cx*cz -cy*cz -cz^2;-cx^2 -cx*cy -cx*cz cx^2 cx*cy cx*cz;-cx*cy -cy^2 -cy*cz cx*cy cy^2 cy*cz;-cx*cz -cy*cz -cz^2 cx*cz cy*cz cz^2]
+ end
+ if i==2 then
+ cx=0.8
+ cy=0
+ cz=0.6
+ K2=3*10^5*[cx^2 cx*cy cx*cz -cx^2 -cx*cy -cx*cz;cx*cy cy^2 cy*cz -cx*cy -cy^2 -cy*cz;cx*cz cy*cz cz^2 -cx*cz -cy*cz -cz^2;-cx^2 -cx*cy -cx*cz cx^2 cx*cy cx*cz;-cx*cy -cy^2 -cy*cz cx*cy cy^2 cy*cz;-cx*cz -cy*cz -cz^2 cx*cz cy*cz cz^2]
+ end
+ if i==3 then
+ cx=0.8
+ cy=0.6
+ cz=0
+ K3=3*10^5*[cx^2 cx*cy cx*cz -cx^2 -cx*cy -cx*cz;cx*cy cy^2 cy*cz -cx*cy -cy^2 -cy*cz;cx*cz cy*cz cz^2 -cx*cz -cy*cz -cz^2;-cx^2 -cx*cy -cx*cz cx^2 cx*cy cx*cz;-cx*cy -cy^2 -cy*cz cx*cy cy^2 cy*cz;-cx*cz -cy*cz -cz^2 cx*cz cy*cz cz^2]
+ end
+end
+
+//Calculating required elements of global Stiffness Matrix
+K([10:12],[10:12]) = [K1(4,4)+K2(4,4)+K3(4,4) K1(4,5)+K2(4,5)+K3(4,5) K1(4,6)+K2(4,6)+K3(4,6); K1(4,5)+K2(4,5)+K3(4,5) K1(5,5)+K2(5,5)+K3(5,5) K1(5,6)+K2(5,6)+K3(5,6); K1(4,6)+K2(4,6)+K3(4,6) K1(5,6)+K2(5,6)+K3(5,6) K1(6,6)+K2(6,6)+K3(6,6)]
+
+//Constructing required Force matrix
+F([10:12],1)=[0;-5000;0]
+
+//Solving for node 4 displacements
+U(10:12,1)=linsolve(K(10:12,10:12),-F(10:12,1)) //K*U=F (equlibrium equation)
+
+//Printing Results
+printf('\nResults\n')
+printf('\nNode-4 Displacement Components \nUx=%fin \nUy=%fin \nUz=%fin',U(10,1),U(11,1),U(12,1))
+
+