summaryrefslogtreecommitdiff
path: root/3574/CH6/EX6.1/EX6_1.sce
diff options
context:
space:
mode:
Diffstat (limited to '3574/CH6/EX6.1/EX6_1.sce')
-rw-r--r--3574/CH6/EX6.1/EX6_1.sce79
1 files changed, 79 insertions, 0 deletions
diff --git a/3574/CH6/EX6.1/EX6_1.sce b/3574/CH6/EX6.1/EX6_1.sce
new file mode 100644
index 000000000..1c9278007
--- /dev/null
+++ b/3574/CH6/EX6.1/EX6_1.sce
@@ -0,0 +1,79 @@
+// Example 6.1
+// Determine (a) Locked rotor current in each winding (b) Phase displacement
+// angle between the two currents (c) Locked rotor torque in terms of the
+// machine constant (d) External resistance required in series with the auxillary
+// winding in order to obtain a 30 degree phase displacement between the currents
+// in the two windings (e) Locked rotor torque for the conditions in (d)
+// (f) Percent increase in locked rotor torque due to the addition of external
+// resistance
+// Page No. 257
+
+clc;
+clear;
+close;
+
+// Given data
+Zmw=2.00+%i*3.50 // Main winding impedance
+Zaw=9.15+%i*8.40 // Auxillary winding impedance
+VT=120; // Transformer voltage
+Xaw=8.40; // Auxillary winding reactance
+Raw=9.15; // Auxillary winding resistance
+
+// (a) Locked rotor current in each winding
+// Main winding impedance in polar form
+// Complex to Polar form...
+Zmw_Mag=sqrt(real(Zmw)^2+imag(Zmw)^2); // Magnitude part
+Zmw_Ang=atan(imag(Zmw),real(Zmw))*180/%pi; // Angle part

+
+// Auxillary winding impedance in polar form
+// Complex to Polar form...
+Zaw_Mag=sqrt(real(Zaw)^2+imag(Zaw)^2); // Magnitude part
+Zaw_Ang=atan(imag(Zaw),real(Zaw))*180/%pi; // Angle part

+
+// Main winding current
+Imw_Mag=VT/Zmw_Mag; // Main winding current magnitude
+Imw_Ang=0-Zmw_Ang; // Main winding current angle
+
+// Auxillary winding current
+Iaw_Mag=VT/Zaw_Mag; // Auxillary winding current magnitude
+Iaw_Ang=0-Zaw_Ang; // Auxillary winding current angle
+
+// (b) Phase displacement angle between the two currents
+Alpha=abs(Imw_Ang-Iaw_Ang);
+
+// (c) Locked rotor torque in terms of the machine constant
+Tlr=Imw_Mag*Iaw_Mag*sind(Alpha);
+
+// (d) External resistance required in seris with the auxillary winding in
+// order to obtain a 30 degree phase displacement between the currents in the
+// two windings
+Theta_awi=Imw_Ang+30; // Required phase angle
+Theta_awz=-Theta_awi;
+Rx=(Xaw/tand(Theta_awz))-Raw;
+
+// (e) Locked rotor torque for the conditions in (d)
+Zawnew=Raw+Rx+%i*Xaw; // Auxillary winding impedance
+// Complex to Polar form...
+Zmwnew_Mag=sqrt(real(Zawnew)^2+imag(Zawnew)^2); // Magnitude part
+Zmwnew_Ang=atan(imag(Zawnew),real(Zawnew))*180/%pi; // Angle part

+
+Iawnew_Mag=VT/Zmwnew_Mag; // Auxillary winding current magnitude
+Iawnew_Ang=0-Zmwnew_Ang; // Auxillary winding current magnitude
+Tlenew=Imw_Mag*Iawnew_Mag*sind(30);
+
+// (f) Percent increase in locked rotor torque due to the addition of external
+// resistance
+PI=(Tlenew-Tlr)/Tlr*100;
+
+
+// Display result on command window
+printf("\n Main winding current magnitude = %0.1f A ",Imw_Mag);
+printf("\n Main winding current angle = %0.1f deg ",Imw_Ang);
+printf("\n Auxillary winding current magnitude = %0.2f A ",Iaw_Mag);
+printf("\n Auxillary winding current angle = %0.1f deg ",Iaw_Ang);
+printf("\n Phase displacement angle = %0.1f deg ",Alpha);
+printf("\n Locked rotor torque in terms of the machine constant = %0.2f.Ksp ",Tlr);
+printf("\n External resistance required = %0.2f Ohm ",Rx);
+printf("\n Locked rotor torque = %0.1f.Ksp ",Tlenew);
+printf("\n Percent increase in locked rotor torque = %0.1f Percent increase ",PI);
+