diff options
Diffstat (limited to '3557/CH18')
-rw-r--r-- | 3557/CH18/EX18.1/Ex18_1.sce | 9 | ||||
-rw-r--r-- | 3557/CH18/EX18.3/Ex18_3.sce | 9 | ||||
-rw-r--r-- | 3557/CH18/EX18.4/Ex18_4.sce | 9 | ||||
-rw-r--r-- | 3557/CH18/EX18.5/Ex18_5.sce | 7 | ||||
-rw-r--r-- | 3557/CH18/EX18.6/Ex18_6.sce | 9 | ||||
-rw-r--r-- | 3557/CH18/EX18.7/Ex18_7.sce | 8 | ||||
-rw-r--r-- | 3557/CH18/EX18.8/Ex18_8.sce | 5 | ||||
-rw-r--r-- | 3557/CH18/EX18.9/Ex18_9.sce | 18 |
8 files changed, 74 insertions, 0 deletions
diff --git a/3557/CH18/EX18.1/Ex18_1.sce b/3557/CH18/EX18.1/Ex18_1.sce new file mode 100644 index 000000000..314292ebe --- /dev/null +++ b/3557/CH18/EX18.1/Ex18_1.sce @@ -0,0 +1,9 @@ +//Example 18.1//
+ur=1.01;
+u0=4*%pi*10^-7;//henry/m
+H=2*10^5;//amperes/m
+B=ur*u0*H
+mprintf("B = %f weber/m^2",B)
+//Using second equality, we obtain
+M=(ur-1)*(H)
+mprintf("\nM = %e amperes/m",M)
diff --git a/3557/CH18/EX18.3/Ex18_3.sce b/3557/CH18/EX18.3/Ex18_3.sce new file mode 100644 index 000000000..40825bde5 --- /dev/null +++ b/3557/CH18/EX18.3/Ex18_3.sce @@ -0,0 +1,9 @@ +//Example18.3//
+
+x=[6*10^4 1*10^4 0 -1*10^4 -2*10^4 -3*10^4 -4*10^4 -5*10^4 -6*10^4 -6*10^4 -1e4 0 1e4 2e4 3e4 4e4 5e4 6e4]
+y=[0.65 0.58 0.56 0.53 0.46 0.30 0 -0.44 -0.65 -0.65 -0.58 -0.56 -0.53 -0.46 -0.30 0 0.44 0.65]
+plot2d(x,y, style=1)
+xlabel("H(10^4 A/m)", "fontsize", 2);
+ylabel("Br(web/m2");
+mprintf("(b) The remanent induction Br =0.56 weber/m^2 at (H = 0)")
+mprintf("\n(c) The coercive field Hc = -4*10^4 amperes/m (at B= 0)")
diff --git a/3557/CH18/EX18.4/Ex18_4.sce b/3557/CH18/EX18.4/Ex18_4.sce new file mode 100644 index 000000000..071742498 --- /dev/null +++ b/3557/CH18/EX18.4/Ex18_4.sce @@ -0,0 +1,9 @@ +//Example 18.4//
+
+n=8;//numbers Ni2+/ unit cell
+n1=2; //moment of Ni2+
+m=n*n1
+mprintf("m = %i ",m)
+a=18.4;// measured value of nickel ferrite
+e=((a-m)/a)*100
+mprintf("\ne = %i percent",e)
diff --git a/3557/CH18/EX18.5/Ex18_5.sce b/3557/CH18/EX18.5/Ex18_5.sce new file mode 100644 index 000000000..667dfa062 --- /dev/null +++ b/3557/CH18/EX18.5/Ex18_5.sce @@ -0,0 +1,7 @@ +//Example 18.5//
+
+a=18.4;// measured value of nickel ferrite
+ub=9.274*10^-24;//A m^2// ampere-meters square //Moment
+v=(0.833*10^-9);//m //meter // volume of unit cell
+Ms=(a*ub)/v^3
+mprintf("Ms = %e A/m",Ms)
diff --git a/3557/CH18/EX18.6/Ex18_6.sce b/3557/CH18/EX18.6/Ex18_6.sce new file mode 100644 index 000000000..23cd0d564 --- /dev/null +++ b/3557/CH18/EX18.6/Ex18_6.sce @@ -0,0 +1,9 @@ +//Example18.6//
+
+a=8.9*10^4;//(amperes/m)(webers/m^2) // Area
+mprintf("a= %e (amperes.webers)/m^3",a)
+//one ampere weber is equal to 1joule. The area is then a volume density of energy ,or
+e=8.9*10^4//J/m^3 //energy loss
+b= 10^-3; //As 1Kilogram = 10^3 gram
+e1=e*b
+mprintf("\ne1 = %i kJ/m^3 (per cycle) (As 1Kilogram = 10^3 garm)",e1)
diff --git a/3557/CH18/EX18.7/Ex18_7.sce b/3557/CH18/EX18.7/Ex18_7.sce new file mode 100644 index 000000000..be4f4420c --- /dev/null +++ b/3557/CH18/EX18.7/Ex18_7.sce @@ -0,0 +1,8 @@ +//Example 18.7//
+
+y=[0 9 9.2 5.3 0]; //B(webers/m^2)
+x=[0 0.30 0.46 0.53 0.56]; //(BH(weber A/m^3 = J/m^3)
+plot2d(x,y, style=1)
+mprintf("(BH)max ~10*10^3 J/m^3")
+ylabel("BH*(kJ/m^3)","fontsize",4);
+xlabel("B(web/m^2)","fontsize",4);
diff --git a/3557/CH18/EX18.8/Ex18_8.sce b/3557/CH18/EX18.8/Ex18_8.sce new file mode 100644 index 000000000..4d9829eec --- /dev/null +++ b/3557/CH18/EX18.8/Ex18_8.sce @@ -0,0 +1,5 @@ +//Example 18.8//
+r=0.067;//nm
+R=0.132;//nm
+ra=r/R
+disp(ra)
diff --git a/3557/CH18/EX18.9/Ex18_9.sce b/3557/CH18/EX18.9/Ex18_9.sce new file mode 100644 index 000000000..1ed60dd8c --- /dev/null +++ b/3557/CH18/EX18.9/Ex18_9.sce @@ -0,0 +1,18 @@ +//Example 18.8//
+
+//(a)
+a=8;// magnetic moment/unit cell
+b=5;//moment of Mn2+
+m=a*b
+mprintf("m = %i ",m)
+
+//(b)
+c=16;//(number Fe3+/unit cell)
+d=5;//(moment of Fe3+)
+m1=-(a*b)+(c*d)
+mprintf("\nm1 = %i ",m1)
+
+//(c) A 50:50 mixture will give
+a1=0.5;//given
+m2=(a1*m1)+(a1*m1)
+mprintf("\nm2 = %i ",m2)
|