diff options
Diffstat (limited to '3557/CH17')
-rw-r--r-- | 3557/CH17/EX17.1/Ex17_1.sce | 13 | ||||
-rw-r--r-- | 3557/CH17/EX17.10/Ex17_10.sce | 16 | ||||
-rw-r--r-- | 3557/CH17/EX17.11/Ex17_11.sce | 16 | ||||
-rw-r--r-- | 3557/CH17/EX17.12/Ex17_12.sce | 16 | ||||
-rw-r--r-- | 3557/CH17/EX17.13/Ex17_13.sce | 8 | ||||
-rw-r--r-- | 3557/CH17/EX17.14/Ex17_14.sce | 30 | ||||
-rw-r--r-- | 3557/CH17/EX17.15/Ex17_15.sce | 50 | ||||
-rw-r--r-- | 3557/CH17/EX17.16/Ex17_16.sce | 20 | ||||
-rw-r--r-- | 3557/CH17/EX17.2/Ex17_2.sce | 17 | ||||
-rw-r--r-- | 3557/CH17/EX17.3/Ex17_3.sce | 9 | ||||
-rw-r--r-- | 3557/CH17/EX17.4/Ex17_4.sce | 16 | ||||
-rw-r--r-- | 3557/CH17/EX17.5/Ex17_5.sce | 11 | ||||
-rw-r--r-- | 3557/CH17/EX17.6/Ex17_6.sce | 14 | ||||
-rw-r--r-- | 3557/CH17/EX17.7/Ex17_7.sce | 20 | ||||
-rw-r--r-- | 3557/CH17/EX17.8/Ex17_8.sce | 28 | ||||
-rw-r--r-- | 3557/CH17/EX17.9/Ex17_9.sce | 35 |
16 files changed, 319 insertions, 0 deletions
diff --git a/3557/CH17/EX17.1/Ex17_1.sce b/3557/CH17/EX17.1/Ex17_1.sce new file mode 100644 index 000000000..54aff4636 --- /dev/null +++ b/3557/CH17/EX17.1/Ex17_1.sce @@ -0,0 +1,13 @@ +//Example 17.1//
+
+psi=2.33;//g cm^-3 //Density of Silicon
+a=28.09;//amu //atomic mass of silicon
+b=10^6;//cm^3/m^3 //given
+c=1;//g.atom //given
+d=0.6023*10^24;//atoms/g.atom //Avogadro's Number
+p=psi*b*(c/a)*d
+mprintf("p = %e atoms/m^3",p)
+e=28;//conduction electron
+f=10^14;//atoms //given
+n=(e/f)*p
+mprintf("\nn = %e m^-3",n)
diff --git a/3557/CH17/EX17.10/Ex17_10.sce b/3557/CH17/EX17.10/Ex17_10.sce new file mode 100644 index 000000000..c0069f09b --- /dev/null +++ b/3557/CH17/EX17.10/Ex17_10.sce @@ -0,0 +1,16 @@ +//Example 17.10//
+
+//(a)
+Eg=1.107;//eV //bands gap
+h=(0.663*10^-33);//J s //Planck's constant
+c=(3*10^8);//m/s //speed of light
+q=0.16*10^-18;//J/eV // 1 Coulomb of charge
+a=10^9;//nm/m //given
+l=((h*c)/(Eg*q))*a
+mprintf(" Answer calculated in the texbook is wrong")
+mprintf("\nl = %i nm",l)
+//(b)
+Eg1=0.049;//eV// band gap
+l1=((h*c)/(Eg1*q))*a
+mprintf("\nl1 = %i nm",l1)
+
diff --git a/3557/CH17/EX17.11/Ex17_11.sce b/3557/CH17/EX17.11/Ex17_11.sce new file mode 100644 index 000000000..ad96584b1 --- /dev/null +++ b/3557/CH17/EX17.11/Ex17_11.sce @@ -0,0 +1,16 @@ +//Example 17.11//
+
+b=100;//g //doped GaAs
+c=10^9;//ppb Se
+d=100;//g //given
+a=(d/c)*b
+mprintf("a = %e g Se",a)
+S=78.96;//g/g.atom //atomic mass of selenium
+Se=a/S
+mprintf("\nSe = %e g atom",Se)
+Ga=69.72;//g/mol //atomic mass of gallium
+As=74.92;//g/mol //atomic mass of arsenic
+G=(b-a)/(Ga+As)
+mprintf("\nG = %f mol",G)
+m=(Se/(G+Se))*100
+mprintf("\nm = %e mol percent",m)
diff --git a/3557/CH17/EX17.12/Ex17_12.sce b/3557/CH17/EX17.12/Ex17_12.sce new file mode 100644 index 000000000..2db1cca7d --- /dev/null +++ b/3557/CH17/EX17.12/Ex17_12.sce @@ -0,0 +1,16 @@ +//Example 17.12//
+
+n=(1.4*10^12);//m^-3 //density of charge carrier
+q=(0.16*10^-18);//C // Coulomb of Charge
+ue=0.720;//m^2 /(V s) //Electron mobility of GaAs
+uh=0.020;//m^2 /(V s) //Hole mobility of GaAs
+s=n*q*(ue+uh)
+mprintf("s = %e ohm^-1 m^-1",s)
+Eg=1.47;//eV //band gap
+k=86.2*10^-6;//eV/K //Boltzmann constant
+T=300;//K //absolute temperature
+s0=s*%e^((Eg)/(2*k*T))
+mprintf("\ns0 = %e ohm^-1 m^-1 ",s0)
+T2=323;//k //absolute temperature
+s50=s0*%e^-((Eg)/(2*k*T2))
+mprintf("\ns50 = %e ohm^-1 m^-1",s50)
diff --git a/3557/CH17/EX17.13/Ex17_13.sce b/3557/CH17/EX17.13/Ex17_13.sce new file mode 100644 index 000000000..b834d1147 --- /dev/null +++ b/3557/CH17/EX17.13/Ex17_13.sce @@ -0,0 +1,8 @@ +//Example 17.13//
+
+ue=0.070;//Electron Mobility CdTe (From table 17.5)
+uh=0.007;//holes Mobility CdTe (From table 17.5)
+fe=ue/(ue+uh)
+mprintf("fe = %f ",fe)
+fh=uh/(ue+uh)
+mprintf("\nfh = %f ",fh)
diff --git a/3557/CH17/EX17.14/Ex17_14.sce b/3557/CH17/EX17.14/Ex17_14.sce new file mode 100644 index 000000000..58e7f5815 --- /dev/null +++ b/3557/CH17/EX17.14/Ex17_14.sce @@ -0,0 +1,30 @@ +//Example 17.14//
+
+b=1.008;//g //atomic mass of Hydrogen
+c=28.09;//g //atomic mass of Silicon
+a=100;//given
+e=0.2;//given
+f=0.8;//given
+a2=f*c //(cross multiplying)
+//mprintf("a2 = %f ",a2)
+a3=b*a //(cross multiplication)
+//mprintf("a3 = %f ",a3)
+a4=e*b //(cross multiplication)
+//mprintf("a4 = %f g Si",a4)
+a5=e*a3//multiplication
+//mprintf("a5 = %f g Si",a5)
+x=a5/(a2-a4)
+mprintf("x = %f g H",x)
+x1=0.889;//g H
+x2=a-x1
+mprintf("\nx2 = %f g Si",x2)
+a7=2.3; //g cm^-3 //density of pure amporhous silicon
+//the volume occupied by the silicon will be
+V=x2/a7
+mprintf("\nV = %f cm^3",V)
+//Therefore the density of the alloy will be
+p=a/V
+mprintf("\np = %f g cm^-3",p)
+//which is an increase of
+a1=((p-a7)/(a7))*100
+mprintf("\na1 = %f percent ",a1)
diff --git a/3557/CH17/EX17.15/Ex17_15.sce b/3557/CH17/EX17.15/Ex17_15.sce new file mode 100644 index 000000000..ffe787a5c --- /dev/null +++ b/3557/CH17/EX17.15/Ex17_15.sce @@ -0,0 +1,50 @@ +//Example 17.15//
+
+//(a)
+y1=1190;// degree C //y1 coordinate of the location where the line crosses the y axis.
+y2=1414;// degree C //y2 coordinate of the location where the line crosses the y axis.
+x1=99.985;;// wt % //composition of Si
+x2=100; //wt % // composition of Si
+a=y2-y1;//(subracting y intercept of linear euation)
+//mprintf("a = %i",a)
+a1=x2-x1 //(subracting m slope of line of linear equation)
+//mprintf("a1 = %f ",a1)
+m=a/a1; //(Obtaining m value)
+mprintf("m = %e ",m)
+b=y2-m*x2; //(Obtaining b value)
+mprintf("\nb = %e ",b)
+y3=1360;//degree C //composition
+x=(y3-b)/m
+mprintf("\nx = %f ",x)
+//The segregation coefficienct is calculated in terms of impurity levels
+Cs=x2-x
+mprintf("\nCs = %f wt percent Al",Cs)
+x3=90;//percent //si composition
+Cl=x2-x3;
+mprintf("\nCl = %i wt percent Al",Cl)
+K=Cs/Cl
+mprintf("\nK = %e ",K)
+
+//(b) For the liquids line a similar staright line expression take place on the values
+a4=y2-y3;//(subracting y intercept of linear euation)
+//mprintf("a4 = %i",a4)
+a5=x2-x3 //(subracting m slope of line of linear equation)
+//mprintf("a5 = %f ",a5)
+m1=a4/a5; //(Obtaining m value)
+mprintf("\nm1 = %e ",m1)
+b1=y2-m1*x2; //(Obtaining b value)
+mprintf("\nb1 = %f ",b1)
+//A 99 wt % Si bar will have a liquids temperature
+x4=99;//
+T=m1*(x4)+b1
+mprintf("\nT = %f degree C",T)
+//The corresponding solids composition is given by
+x5=(T-b)/m
+mprintf("\nx1 = %f wt percent Si",x1)
+//An alternate composition expression
+x5=99.999638;//Wt % Si
+c=100;//percent
+i=(x2-x5)/c
+mprintf("\ni = %e Al",i)
+mprintf("\nor 3.62 parts per million Al")
+mprintf("\nThese calculations are susceptible to round-off errors. Values of m and bin the solidus line equation must be carried to several palces")
diff --git a/3557/CH17/EX17.16/Ex17_16.sce b/3557/CH17/EX17.16/Ex17_16.sce new file mode 100644 index 000000000..25c9ba475 --- /dev/null +++ b/3557/CH17/EX17.16/Ex17_16.sce @@ -0,0 +1,20 @@ +//Example 17.16//
+
+Ic=5;//mA //Collector Current
+Ve=5;//mV // Emitter Voltage
+Ic1=50;//mA //Collector Current
+Ve2=25;//mV //Emitter voltage
+a=log(Ic1/Ic)//(Taking antilog to remove the exponential term)
+//mprintf("a = %f mV",a)
+b=(Ve2-Ve)//(Subtracting the terms)
+//mprintf("b = %i ",b)
+B=b/a //(Dividing the terms)
+mprintf("B = %f mV ",B)
+I0=Ic*%e^-(Ve/B)
+mprintf("\n I0 = %f mA",I0)
+//Therefore
+B1=8.69;//mV //constant
+Ve3=50;//mV //emitter voltage
+I01=2.81;//mA // collector current
+Ic=I01*%e^(Ve3/B1)
+mprintf("\nIc = %i mA",Ic)
diff --git a/3557/CH17/EX17.2/Ex17_2.sce b/3557/CH17/EX17.2/Ex17_2.sce new file mode 100644 index 000000000..4080d3008 --- /dev/null +++ b/3557/CH17/EX17.2/Ex17_2.sce @@ -0,0 +1,17 @@ +//Example 17.2//
+
+n=23*10^18; //m^-3 //density of conduction electron
+q=0.16*10^-18;//C //one elementary charge
+ue=0.364;//m^2/(V.s) //electron mobility of germanium
+uh=0.190;//m^2/(V.s)//hole mobility of germanium
+si=n*q*(ue+uh)
+mprintf("si = %f ohm^-1 m^-1",si)
+Eg=0.66;//eV //band gap
+k=(86.2*10^-6);//eV/K //Boltzmann constant
+T=300;//K //absolute temperature
+s0=si*%e^(Eg/(2*k*T))
+mprintf("\ns0 = %e ohm^-1 m^-1",s0)
+//Then
+T1=473;//K //absolute temperature
+s2=s0*%e^-(Eg/(2*k*T1))
+mprintf("\ns2 = %i ohm^-1 m^-1",s2)
diff --git a/3557/CH17/EX17.3/Ex17_3.sce b/3557/CH17/EX17.3/Ex17_3.sce new file mode 100644 index 000000000..d46a96749 --- /dev/null +++ b/3557/CH17/EX17.3/Ex17_3.sce @@ -0,0 +1,9 @@ +//Example 17.3//
+
+T1=293;//K //Temperature
+T2=373;//K //Temperature
+k=86.2*10^-6;//eV/K //Boltzmann constant
+T3=1100;//ohm^-1 m^-1 //conductivity
+T4=250;//ohm^-1 m^-1 //conductivity
+Eg=-(2*k*(log(T3/T4)))/((1/T2)-(1/T1))
+mprintf("Eg = %f eV",Eg)
diff --git a/3557/CH17/EX17.4/Ex17_4.sce b/3557/CH17/EX17.4/Ex17_4.sce new file mode 100644 index 000000000..dfe836c79 --- /dev/null +++ b/3557/CH17/EX17.4/Ex17_4.sce @@ -0,0 +1,16 @@ +//Example 17.4//
+
+//For 100g of doped silicon there will be
+b=100;//ppb //Al by weight
+c=10^9;//given
+d=100;//g Al
+a=(b/c)*d
+mprintf("a = %e g Al",a)
+e=26.98;//g/g.atom //atomic mass of aluminium
+Al=a/e
+mprintf("\nAl = %e g atom",Al)
+f=28.09;//g/g.atom // atomic mass of Silicon
+Si=(b-a)/f
+mprintf("\nSi = %f g atoms",Si)
+pAl=((Al)/(Si+Al))*100
+mprintf("\npAl = %e atomic percent",pAl)
diff --git a/3557/CH17/EX17.5/Ex17_5.sce b/3557/CH17/EX17.5/Ex17_5.sce new file mode 100644 index 000000000..6b6350a43 --- /dev/null +++ b/3557/CH17/EX17.5/Ex17_5.sce @@ -0,0 +1,11 @@ +//Example 17.5//
+
+a=1.107;//eV //band gap
+b=2;//eV //given
+c=0.1;//eV //Fermi level shifted upward
+E=(a/b)-c
+mprintf("E = %f eV",E)
+k=86.2*10^-6;//eV k^-1//Boltazmann constant
+T=298;//K //Temperature
+fE=1/((%e^(E/(k*T)))+1)
+mprintf("\nfE = %e ",fE)
diff --git a/3557/CH17/EX17.6/Ex17_6.sce b/3557/CH17/EX17.6/Ex17_6.sce new file mode 100644 index 000000000..527d9d110 --- /dev/null +++ b/3557/CH17/EX17.6/Ex17_6.sce @@ -0,0 +1,14 @@ +//Example 17.6//
+
+s=100;//ohm^-1 m^-1 //preexponential constant
+k=86.2*10^-6;//eV K^-1 //Boltzmann constant
+T=298;//K //Temperature
+Eg=1.0;//eV // band gap
+Ed=0.9;//eV //donor level
+//AT 25 degree C
+s0=s*%e^((Eg-Ed)/(k*T))
+mprintf("s0 = %e ohm^-1 m^-1",s0)
+//At 30degree C
+T1=303;//K//temperature
+s=s0*%e^-((Eg-Ed)/(k*T1))
+mprintf("\ns = %i ohm^-1 m^-1",s)
diff --git a/3557/CH17/EX17.7/Ex17_7.sce b/3557/CH17/EX17.7/Ex17_7.sce new file mode 100644 index 000000000..bad1d0159 --- /dev/null +++ b/3557/CH17/EX17.7/Ex17_7.sce @@ -0,0 +1,20 @@ +//Example 17.7//
+
+s=60;//ohm^-1 m^-1 //extrinsic conductivity
+q=0.16*10^-18;//C //1 coulomb of charge
+ue=0.364;//m^2/(V.s) //electron mobility
+n=s/(q*ue)
+mprintf("n = %e m^-3",n)
+a=1.03*10^21;//atomsP/m^3
+b=30.97;//g P
+c=0.6023*10^24;//atoms P //Avaogardo's Number
+d=1;//cm^3 Ge //given
+e=5.32//g Ge // Density of Germanium
+f=1;//m^3 //given
+g=10^6;//cm^3 //given
+p=a*(b/c)*(d/e)*(f/g)
+mprintf("\np = %e g P/g Ge",p)
+j=10^9;//as 10^9= 1 billion
+i=p*j
+mprintf("\ni = %f ppb P",i)
+mprintf(" ( As 10^9 = 1 billion)")
diff --git a/3557/CH17/EX17.8/Ex17_8.sce b/3557/CH17/EX17.8/Ex17_8.sce new file mode 100644 index 000000000..2ee762592 --- /dev/null +++ b/3557/CH17/EX17.8/Ex17_8.sce @@ -0,0 +1,28 @@ +//Example 17.8//
+
+a=23*10^18;//m^-3
+q=0.16*10^-18;//C //1 coulomb of charge
+b=0.364;//m^2/(V.s)//Electron mobility of germanium
+c=0.190;//m^2/(V.s) //Hole Mobility of Germanium
+s300K=a*q*(b+c)
+mprintf("s300K = %f ohm^-1 m^-1",s300K)
+Eg=0.66;//V //band gap
+k=86.2*10^-6;//eV/K //Boltzmann constant
+T=300;//K //absolute temperature
+s0=s300K*%e^((Eg)/(2*k*T))
+mprintf("\ns0 = %e ohm^-1 m^-1",s0)
+Eg1=-0.66;//eV//band gap
+i=60;//ohm^-1 m^-1 //extrinsic conductivity
+j=log(i/s0);// Taking log to remove exponential term
+//mprintf("j = %f ",j)
+T1=1/((j*2*k)/Eg1);//(Cross multiply and dividing)
+mprintf("\nT1 = %i K = 135degree C",T1)
+//(b)
+Ed=0.012;//eV
+T2=373;//K //absolute temperature
+s1=i*%e^((Ed)/(k*T2))
+mprintf("\ns1 = %f ohm^-1 m^-1",s1)
+//At 300K
+T3=300;//K //absolute temperature
+s2=s1*%e^-((Ed)/(k*T3))
+mprintf("\ns2 = %f ohm^-1 m^-1",s2)
diff --git a/3557/CH17/EX17.9/Ex17_9.sce b/3557/CH17/EX17.9/Ex17_9.sce new file mode 100644 index 000000000..9fc2019af --- /dev/null +++ b/3557/CH17/EX17.9/Ex17_9.sce @@ -0,0 +1,35 @@ + //Example 17.9//
+
+//Extrinsic data
+s1=60;//ohm^-1 m^-1 //conduvtivity
+ln1=log(s1)
+mprintf("ln1 = %f ohm^-1 m^-1",ln1)
+t1=373;//K //Temperature
+T1=1/t1
+mprintf("\nT1 = %e k^-1",T1)
+s2=54.8;//ohm^-1 m^-1//conductivity
+ln2=log(s2)
+mprintf("\nln2 = %f ohm^-1 m^-1",ln2)
+t2=300;//K //Temperature
+T2=1/t2
+mprintf("\nT2 = %e k^-1",T2)
+
+//Intrinsic Data
+s3=60;//ohm^-1 m^-1 //conductivity
+ln3=log(s3)
+mprintf("\nln3 = %f ohm^-1 m^-1",ln3)
+t3=408;//K //Temperature
+T3=1/t3
+mprintf("\nT3 = %e K^-1",T3)
+s4=2.04;//ohm^-1 m^-1 //conductivity
+ln4=log(s4)
+mprintf("\nln4 = %f Ohm^-1 m^-1",ln4)
+t4=300;//K //Temperaure
+T4=1/t4
+mprintf("\nT4 = %e K",T4)
+x=[2.68 3.33 2.45 3.33];
+y=[4.09 4.00 4.09 0.713];
+plot2d(x,y, style=1)
+ylabel("ln sigma (ohm^-1 m^-1)", "fontsize", 4);
+xlabel("1/T*10^3 (K^-1)", "fontsize", 4 );
+
|