summaryrefslogtreecommitdiff
path: root/3557/CH11
diff options
context:
space:
mode:
Diffstat (limited to '3557/CH11')
-rw-r--r--3557/CH11/EX11.1/Ex11_1.sce50
-rw-r--r--3557/CH11/EX11.2/Ex11_2.sce14
2 files changed, 64 insertions, 0 deletions
diff --git a/3557/CH11/EX11.1/Ex11_1.sce b/3557/CH11/EX11.1/Ex11_1.sce
new file mode 100644
index 000000000..0e504969f
--- /dev/null
+++ b/3557/CH11/EX11.1/Ex11_1.sce
@@ -0,0 +1,50 @@
+//Example11.1//
+Ni=0.55;//wt % // steel and nominal alloy content
+Cr=0.50;//wt % //steel and nominal alloy content
+Mo=0.20;//wt % //steel and nominal alloy content
+C=0.30;//wt %//steel and nominal alloy content
+a=100-(Ni+Cr+Mo+C)
+mprintf("a = %f g Fe ",a)
+a1=55.85;//g /mol // atomic mass of iron
+b=0.6023*10^24;//atoms/ mol //Avagardo's constant
+NFe=(a/a1)*b
+mprintf("\nNFe = %e atoms",NFe)
+//similarly
+c=58.71;//g/mol // atomic mass of nickel
+Nni=(Ni/c)*b
+mprintf("\nNni = %e atoms",Nni)
+d=52.00;//g/mol // atomic mass of chromium
+NCr=(Cr/d)*b
+mprintf("\nNCr = %e atoms",NCr)
+e=95.94;//g/mol //atomic mass of Molybdenum
+NMo=(Mo/e)*b
+mprintf("\nNMo = %e atoms",NMo)
+f=12.01;//g/mol //atomic mass of Carbon
+NC=(C/f)*b
+mprintf("\nNC = %e atoms",NC)
+//so in a 100-g there shold be
+Ntotal=NFe+Nni+NCr+NMo+NC
+mprintf("\nNtotal = %e atoms",Ntotal)
+//The atomic fraction of each alloying element is then
+XNi=Nni/Ntotal
+mprintf("\nXNi = %e ",XNi)
+XCr=NCr/Ntotal
+mprintf("\nXCr = %e",XCr)
+XMo=NMo/Ntotal
+mprintf("\nXMo = %e",XMo)
+Xc=NC/Ntotal
+mprintf("\nXc = %e",Xc)
+XNi=5.19*10^-3;//atoms
+XCr=5.32*10^-3;//atoms
+XMo=1.16*10^-3;//atoms
+//which for a 100000 atom alloy gives
+h=10^5;//atoms //given
+NNi=XNi*h
+mprintf("\nNNi = %i atoms",NNi)
+NCr=XCr*h
+mprintf("\nNCr = %i atoms",NCr)
+NMo=XMo*h
+mprintf("\nNMo = %i atoms",NMo)
+Nc=Xc*h
+mprintf("\nNc = %i atoms",Nc)
+
diff --git a/3557/CH11/EX11.2/Ex11_2.sce b/3557/CH11/EX11.2/Ex11_2.sce
new file mode 100644
index 000000000..df7bd1696
--- /dev/null
+++ b/3557/CH11/EX11.2/Ex11_2.sce
@@ -0,0 +1,14 @@
+//Example11.2//
+pFe=7.87;//Mg/m^3 // Density of iron (From Appendix 1)
+pAl=2.70;//Mg/m^3 // Density of Aluminium (From Appendix 1)
+mFe=25;//kg // resulting mass saving
+a=1;//Mg // given
+b=10^3;//kg //given
+V=(mFe/pFe)*(a/b)
+mprintf("V = %e m^3",V)
+//the mass of new aluminium parts would be
+mAl=pAl*V*(b/a)
+mprintf("\nmAl = %f kg",mAl)
+//the resulting mass saving is then
+m=mFe-mAl
+mprintf("\nm = %f kg",m)