diff options
Diffstat (limited to '3556/CH9/EX9.3/Ex9_3.sce')
-rw-r--r-- | 3556/CH9/EX9.3/Ex9_3.sce | 40 |
1 files changed, 40 insertions, 0 deletions
diff --git a/3556/CH9/EX9.3/Ex9_3.sce b/3556/CH9/EX9.3/Ex9_3.sce new file mode 100644 index 000000000..fad68c953 --- /dev/null +++ b/3556/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,40 @@ +clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 2 : AC Circuits
+// Chapter 9 : Sinusoids and Phasors
+// Example 9 - 3
+
+clear; clc; close;
+//
+// Given data
+Z1 = complex(40*cosd(50.0000),40*sind(50.0000));
+Z2 = complex(20*cosd(-30.0000),20*sind(-30.0000));
+Z3 = complex(10*cosd(-30.0000),10*sind(-30.0000));
+Z4 = complex(3.0000,-4.0000);
+Z5 = complex(2.0000,4.0000);
+Z6 = conj(complex(3.0000,-5.0000));
+//
+// Calculations Part a
+Ztot_a = Z1 + Z2;
+Ztot_a_mag = norm(Ztot_a);
+Ztot_a_angle = atand(imag(Ztot_a),real(Ztot_a))
+Ztot_mag_a = sqrt(Ztot_a_mag);
+Ztot_angle_a = 0.500 * Ztot_a_angle;
+// Calculations Part b
+Ztot_b = (Z3 + Z4)/(Z5*Z6);
+Ztot_mag_b = norm(Ztot_b);
+Ztot_angle_b = atand(imag(Ztot_b),real(Ztot_b));
+//
+disp("Example 9-3 Solution : ");
+disp("a. Part a : ");
+printf(" \n Ztot_mag_a = Magnitude of Ztot a = %.3f ",Ztot_mag_a)
+printf(" \n Ztot_angle_a = Angle of Ztot a = %.3f degree",Ztot_angle_a)
+disp("")
+disp("b. Part b : ");
+printf(" \n Ztot_mag_b = Magnitude of Ztot b = %.3f ",Ztot_mag_b)
+printf(" \n Ztot_angle_b = Angle of Ztot b = %.3f degree",Ztot_angle_b)
+
|