diff options
Diffstat (limited to '3556/CH12/EX12.8/Ex12_8.sce')
-rw-r--r-- | 3556/CH12/EX12.8/Ex12_8.sce | 90 |
1 files changed, 90 insertions, 0 deletions
diff --git a/3556/CH12/EX12.8/Ex12_8.sce b/3556/CH12/EX12.8/Ex12_8.sce new file mode 100644 index 000000000..efa3c7daf --- /dev/null +++ b/3556/CH12/EX12.8/Ex12_8.sce @@ -0,0 +1,90 @@ +clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 2 : AC Circuits
+// Chapter 12 : Three Phase Circuit
+// Example 12 - 8
+
+clear; clc; close; // Clear the work space and console.
+//
+// Given data
+VLL = 240.0000;
+f = 60.0000;
+// Load 1
+P1 = 30.00000;
+pf1 = 0.60000;
+// Load 2
+Q2 = 45.00000;
+pf2 = 0.80000;
+// Calculations Complex, Real and Reactive Power of Load 1
+S1 = P1/pf1;
+Q1 = S1 * sqrt(1-((pf1)^2));
+// Calculations Complex, Real and Reactive Power of Load 2
+S2 = Q2/sqrt(1-((pf2)^2));
+P2 = S2 * pf2;
+// Calculations Total Complex, Real and Reactive Power of Load
+ST = complex(P1,Q1) + complex(P2,Q2);
+PT = real(ST);
+QT = imag(ST);
+ST_mag = norm(ST);
+ST_angle = atand(QT,PT)
+// Calculations Line Current For Load 1
+IL1 = (50.0000 * 1000)/(sqrt(3)*240*1000);
+Ia1_mag = IL1;
+Ia1_angle = acosd(pf1);
+// Calculations Line Current For Load 2
+IL2 = (75.0000 * 1000)/(sqrt(3)*240*1000);
+Ia2_mag = IL2;
+Ia2_angle = acosd(pf2);
+// Calculations Line Current for Load
+Ia_tot_real = (Ia1_mag * cosd(Ia1_angle))+(Ia2_mag * cosd(Ia2_angle));
+Ia_tot_imag = (Ia1_mag * sind(Ia1_angle))+(Ia2_mag * sind(Ia2_angle));
+Ia_tot_mag = norm(complex(Ia_tot_real,Ia_tot_imag))
+Ia_tot_angle = atand(Ia_tot_imag,Ia_tot_real)
+// Calculations KVAR for Three Capacitors and Each Capacitor
+angle_old = ST_angle;
+angle_new = acosd(0.9000);
+Qc = PT * (tand(angle_old)-tand(angle_new));
+Qc1 = Qc/3;
+// Calculations Capacitance Each Capacitor
+C = Qc1/((2*(%pi)*f)*(VLL)^2)
+
+//
+disp("Example 12-8 Solution : ");
+disp("a. Complex, Real and Reactive Power of Total Load : ");
+disp("Complex, Real and Reactive Power of Load 1: ");
+printf(" \n S1 = Complex Power of Load 1 = %.3f KVA",S1)
+printf(" \n P1 = Real Power of Load 1 = %.3f KW",P1)
+printf(" \n Q1 = Reactive Power of Load 1 = %.3f KVAR",Q1)
+disp("")
+disp("Complex, Real and Reactive Power of Load 2: ");
+printf(" \n S2 = Complex Power of Load 2 = %.3f KVA",S2)
+printf(" \n P2 = Real Power of Load 2 = %.3f KW",P2)
+printf(" \n Q2 = Reactive Power of Load 2 = %.3f KVAR",Q2)
+disp("")
+disp("Complex, Real and Reactive Power of Total Load : ");
+printf(" \n ST_mag = Magnitude of Complex Power of Total Load = %.3f KVA",ST_mag)
+printf(" \n ST_angle = Angle of Complex Power of Total Load = %.3f Degree",ST_angle)
+printf(" \n PT = Real Power of Total Load = %.3f KW",PT)
+printf(" \n QT = Reactive Power of Total Load = %.3f KVAR",QT)
+disp("")
+disp("b. Line Current for Total Load : ");
+disp("Line Current for Load 1: ");
+printf(" \n Ia1_mag = Magnitude of Line Current For Load 1 = %.3f mA",Ia1_mag*1000)
+printf(" \n Ia1_angle = Angle of Line Current For Load 1 = %.3f Degree",-Ia1_angle)
+disp("")
+disp("Line Current for Load 2: ");
+printf(" \n Ia2_mag = Magnitude of Line Current For Load 2 = %.3f mA",Ia2_mag*1000)
+printf(" \n Ia2_angle = Angle of Line Current For Load 2 = %.3f Degree",-Ia2_angle)
+disp("")
+disp("Total Line Current : ");
+printf(" \n Ia2_mag = Magnitude of Total Line Current For Load = %.3f mA",Ia_tot_mag*1000)
+printf(" \n Ia2_angle = Angle of Total Line Current For Load = %.3f Degree",-Ia_tot_angle)
+disp("")
+disp("c. Capacitance of Capasitor for Improving Power Factor : ");
+printf(" \n Qc = KVAR for Three Capacitors = %.3f KVAR",Qc)
+printf(" \n Qc1 = KVAR for Each Capacitor = %.3f KVAR",Qc1)
+printf(" \n C = Capacitance of Capacitor = %.3f PF",C*1D+09)
|