summaryrefslogtreecommitdiff
path: root/3556/CH11/EX11.14/Ex11_14.sce
diff options
context:
space:
mode:
Diffstat (limited to '3556/CH11/EX11.14/Ex11_14.sce')
-rw-r--r--3556/CH11/EX11.14/Ex11_14.sce39
1 files changed, 39 insertions, 0 deletions
diff --git a/3556/CH11/EX11.14/Ex11_14.sce b/3556/CH11/EX11.14/Ex11_14.sce
new file mode 100644
index 000000000..00161c97f
--- /dev/null
+++ b/3556/CH11/EX11.14/Ex11_14.sce
@@ -0,0 +1,39 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 2 : AC Circuits
+// Chapter 11 : AC power Analysis
+// Example 11 - 14
+
+clear; clc; close;
+//
+// Given data
+Z1 = complex(60*cosd(-30),60*sind(-30))
+Z2 = complex(40*cosd(45),40*sind(45))
+Vrms_mag = 120.0000;
+Vrms_angle = 10.0000;
+Vrms = complex(Vrms_mag*cosd(Vrms_angle),Vrms_mag*sind(Vrms_angle))
+// Calculations I1 and I2
+I1 = Vrms/Z1;
+I2 = Vrms/Z2;
+// Calculation S1, S2 and St
+S1 = (Vrms_mag)^2/conj(Z1);
+S2 = (Vrms_mag)^2/conj(Z2);
+St = S1 + S2;
+// Calculations Total Apparent Power
+St_mag = norm(St);
+// Calculations Total Real Power
+Pt = real(St);
+// Calculations Total Reactive Power
+Qt = imag(St);
+// Calculations Power Factor
+pf = Pt/St_mag;
+//
+disp("Example 11-14 Solution : ");
+printf(" \n a. St_mag = Total Apparent Power = %.3f VA",St_mag)
+printf(" \n b. Pt = Total Real Power = %.3f Watt",Pt)
+printf(" \n c. Qt = Total Reactive Power = %.3f VAR",Qt)
+printf(" \n c. Pf = Power Factor = %.3f Lagging",pf)