summaryrefslogtreecommitdiff
path: root/3556/CH11/EX11.12/Ex11_12.sce
diff options
context:
space:
mode:
Diffstat (limited to '3556/CH11/EX11.12/Ex11_12.sce')
-rw-r--r--3556/CH11/EX11.12/Ex11_12.sce46
1 files changed, 46 insertions, 0 deletions
diff --git a/3556/CH11/EX11.12/Ex11_12.sce b/3556/CH11/EX11.12/Ex11_12.sce
new file mode 100644
index 000000000..93eea10ca
--- /dev/null
+++ b/3556/CH11/EX11.12/Ex11_12.sce
@@ -0,0 +1,46 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 2 : AC Circuits
+// Chapter 11 : AC power Analysis
+// Example 11 - 12
+
+clear; clc; close;
+//
+// Given data
+S_load = 12.0000;
+pf_load = 0.8560;
+Vrms_load = 120.0000;
+Vrms_angle = 0.0000;
+//
+// Calculations Average dan Reactive Power
+P_load = S_load * pf_load;
+Q_load = S_load * sqrt(1 - ((pf_load)^2));
+// Calculations Peak Current
+S = complex(P_load*1000,Q_load*1000)
+V = complex(Vrms_load*cosd(0),Vrms_load*sind(0))
+I_stars = norm(S/V);
+I_peak = I_stars * sqrt(2);
+// Calculations Load Impedance
+Irms_mag = I_stars;
+Irms_real = real(S/V);
+Irms_imag = imag(S/V);
+Irms_angle = -atand(Irms_imag,Irms_real);
+Z_mag = Vrms_load/Irms_mag;
+Z_angle = Vrms_angle - Irms_angle;
+//
+disp("Example 11-12 Solution : ");
+disp("a. Real and Reactive Power : ");
+printf(" \n P_load = Real Power = %.3f KW",P_load)
+printf(" \n Q_load = Reactive Power = %.3f Kvar",Q_load)
+disp("")
+disp("b. Peak Current : ");
+printf(" \n I_peak = Peak Current = %.3f A",I_peak)
+disp("")
+disp("C. Load Impedance : ");
+printf(" \n Z_mag = Magnitude of Load Impedance = %.3f Ohm",Z_mag)
+printf(" \n Z_angle = Angle of Load Impedance = %.3f degree",Z_angle)
+