diff options
Diffstat (limited to '3556/CH10/EX10.8/Ex10_8.sce')
-rw-r--r-- | 3556/CH10/EX10.8/Ex10_8.sce | 48 |
1 files changed, 48 insertions, 0 deletions
diff --git a/3556/CH10/EX10.8/Ex10_8.sce b/3556/CH10/EX10.8/Ex10_8.sce new file mode 100644 index 000000000..7e37da1fb --- /dev/null +++ b/3556/CH10/EX10.8/Ex10_8.sce @@ -0,0 +1,48 @@ +clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+//
+// Part 2 : AC Circuits
+// Chapter 10 : Sinusoidal Steady State Analysis
+// Example 10 - 8
+clear; clc; close;
+
+// Given data
+Z1 = complex(0.0000,-6.000);
+Z2 = complex(8.0000,0.0000);
+Z3 = complex(4.0000,0.0000)
+Z4 = complex(0.0000,12.0000)
+Vs = complex(120*cosd(75.0000),120*sind(75.0000))
+// Calculations Is
+Is = Vs/Z1;
+Is_mag = norm(Is);
+Is_angle = atand(imag(Is),real(Is));
+// Calculations Zp1
+Zp1 = (Z1*Z2)/(Z1+Z2);
+// Calculations Zp2
+Zp2 = (Z3*Z4)/(Z3+Z4);
+// Calculations Zth
+Zth = Zp1 + Zp2;
+Zth_mag = norm(Zth);
+Zth_angle = atand(imag(Zth),real(Zth))
+// Calculations Vth
+I1 = Vs/(Z1+Z2);
+I2 = Vs/(Z3+Z4);
+Vth = (Z3*I2) + (-Z1*I1);
+Vth_mag = norm(Vth);
+Vth_angle = atand(imag(Vth),real(Vth));
+//
+// Display the result
+disp("Example 10-8 Solution : ");
+printf(" \n Zth_mag = Magnitude of Zth = %.3f Volt",Zth_mag)
+printf(" \n Zth_angle = Angle of Zth = %.3f degree",Zth_angle)
+printf(" \n Vth_mag = Magnitude of Vth = %.3f Volt",Vth_mag)
+printf(" \n Vth_angle = Angle of Vth = %.3f degree",Vth_angle+360)
+
+
+
+
+
+
|