diff options
Diffstat (limited to '3554/CH4')
-rw-r--r-- | 3554/CH4/EX4.1/Ex4_1.sce | 13 | ||||
-rw-r--r-- | 3554/CH4/EX4.10/Ex4_10.sce | 17 | ||||
-rw-r--r-- | 3554/CH4/EX4.11/Ex4_11.sce | 22 | ||||
-rw-r--r-- | 3554/CH4/EX4.2/Ex4_2.sce | 16 | ||||
-rw-r--r-- | 3554/CH4/EX4.3/Ex4_3.sce | 37 | ||||
-rw-r--r-- | 3554/CH4/EX4.4/Ex4_4.sce | 18 | ||||
-rw-r--r-- | 3554/CH4/EX4.5/Ex4_5.sce | 28 | ||||
-rw-r--r-- | 3554/CH4/EX4.6/Ex4_6.sce | 36 | ||||
-rw-r--r-- | 3554/CH4/EX4.7/Ex4_7.sce | 40 | ||||
-rw-r--r-- | 3554/CH4/EX4.8/Ex4_8.sce | 51 | ||||
-rw-r--r-- | 3554/CH4/EX4.9/Ex4_9.sce | 18 |
11 files changed, 296 insertions, 0 deletions
diff --git a/3554/CH4/EX4.1/Ex4_1.sce b/3554/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..07723237a --- /dev/null +++ b/3554/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,13 @@ +// Exa 4.1
+
+clc;
+clear all;
+
+// Given data
+
+Iful = 200; // Fullscale deflection current in micro Amperes
+Sen= 1/(Iful*10^-3) ; // Sensitivity of Voltmeter(K Ohms/V)
+
+// Solution
+
+printf(' The sensitivity of the voltmeter = %d k Ohms/V \n',Sen);
diff --git a/3554/CH4/EX4.10/Ex4_10.sce b/3554/CH4/EX4.10/Ex4_10.sce new file mode 100644 index 000000000..fc5ca250b --- /dev/null +++ b/3554/CH4/EX4.10/Ex4_10.sce @@ -0,0 +1,17 @@ +// Exa 4.10
+
+clc;
+clear all;
+
+// Given data
+
+Vin=10; // Input RMS voltage(V)
+Ifsd=1; // Full scale deflection current(mA)
+Rm=250;// Internal resistance of voltmeter(ohms)
+
+// Solution
+
+Sdc=1/(Ifsd*10^-3); // DC sensitivity(K ohm/V)
+Sac=0.9*Sdc; //AC sensitivity(k Ohm/V)
+Rs=Sac*Vin-Rm;// Multiplier resistor(Ohm)
+printf(' The value of multiplier resistor = %.2f k Ohms \n',Rs/1000);
diff --git a/3554/CH4/EX4.11/Ex4_11.sce b/3554/CH4/EX4.11/Ex4_11.sce new file mode 100644 index 000000000..8e122562d --- /dev/null +++ b/3554/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,22 @@ +// Exa 4.11
+
+clc;
+clear all;
+
+// Given data
+Rm=100; // Meter resistance(Ohms)
+Ifsd=1; // Full scale deflection current(mA)
+Rh=2000; // Half of full scale deflection resistance(Ohms)
+V=3; // Internal battery voltage(V)
+
+// Solution
+// Using equations 4.1 and 4.2 given on page no. 104
+
+R1=Rh-Ifsd*10^-3*Rh/V ;// Current limiting resistance(Ohms)
+R2= Ifsd*10^-3*Rm*Rh/(V-Ifsd*10^-3*Rh); // Zero adjust resistance(Ohms)
+ V1= V-0.05*V; // Voltage after 5 percent drop in battery voltage
+R3=Ifsd*10^-3*Rh*Rm/(V1-Ifsd*10^-3*Rh);// Maximum value of R2 to compensate drop in battery
+
+printf(' The values of R1 and R2 are %.1f Ohms and %d Ohms respectively \n ',R1,R2);
+printf('The maximum value of R2 to compensate for a 5 percentage drop \n in battery voltage is =%.2f Ohms \n',R3);
+
diff --git a/3554/CH4/EX4.2/Ex4_2.sce b/3554/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..e59f683e3 --- /dev/null +++ b/3554/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,16 @@ +// Exa 4.2
+
+clc;
+clear all;
+
+// Given data
+
+Iful= 50; // Fullscale deflection current in micro Amperes
+Rm= 500; // Internal resistance in Ohms
+V= 10; // Full range voltage of instrument(Volts)
+
+// Solution
+
+Rs= V/(Iful *10^-6)-Rm; // Multiplier resistance
+
+printf('The value of multiplier resistance = %.1f k Ohms\n',Rs/1000);
diff --git a/3554/CH4/EX4.3/Ex4_3.sce b/3554/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..3a33e3ea9 --- /dev/null +++ b/3554/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,37 @@ +// Exa 4.3
+
+clc;
+clear all;
+
+// Given data
+// Refer Fig. 4.3 on page no. 77
+
+Rm=50; // Internal resistance of Voltmeter(ohms)
+Ifsd=2; // full sclae deflection current(mA)
+
+//Solution
+
+// For 10V range(V4 position of switch)
+V1=10;//Volts
+Rt1=V1/(Ifsd*10^-3); //total resistance in k Ohms
+R4=Rt1-Rm;
+printf('The value of R4 = %d Ohms \n',R4);
+// For a 50V range(V3 position of switch)
+V2=50;//Volts
+Rt2=V2/(Ifsd*10^-3);
+R3=Rt2-(R4+Rm);
+printf(' The value of R3 = %d k Ohms \n',R3/1000);
+
+// For 100V range(V2 position of switch)
+V3=100;//Volts
+Rt3=V3/(Ifsd*10^-3); //total resistance in k Ohms
+R2=Rt3-(R3+R4+Rm);
+printf(' The value of R2 = %d k Ohms \n',R2/1000);
+// For a 250V range(V3 position of switch)
+V4=250;//Volts
+Rt4=V4/(Ifsd*10^-3);
+R1=Rt4-(R2+R3+R4+Rm);
+printf(' The value of R1 = %d k Ohms \n',R1/1000);
+
+
+
diff --git a/3554/CH4/EX4.4/Ex4_4.sce b/3554/CH4/EX4.4/Ex4_4.sce new file mode 100644 index 000000000..4e3df5cda --- /dev/null +++ b/3554/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,18 @@ +// Exa 4.4
+
+clc;
+clear all;
+
+// Given data
+
+Iful= 200; // Full scale deflection current in micro Amperes
+Rm= 100;// Internal resistance of the movement in Ohms
+Range= 50; // Voltage range
+
+// Solution
+
+S= 1/(Iful * 10^-6); // Sensitivity of voltmeter is ohms/volt
+// Rs=S*Range-Rm ;
+Rs=S*Range-Rm; // Multiplier resistance
+
+printf(' The value of multiplier resistance = %.1f K Ohms \n', Rs/1000);
diff --git a/3554/CH4/EX4.5/Ex4_5.sce b/3554/CH4/EX4.5/Ex4_5.sce new file mode 100644 index 000000000..65f78b882 --- /dev/null +++ b/3554/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,28 @@ +// Exa 4.5
+
+clc;
+clear all;
+// Refer circuit diagram in Fig. 4.5 page no.79
+
+// Given data
+
+Ifsd=50; // Full scale deflection current (micro Amp)
+Rm= 1000; // Internal resistance in Ohms
+V1= 5; // Range of voltmeter 1 (V)
+V2=10; //Range of voltmeter 2 (V)
+V3=50;// Range of voltmeter 3 (V)
+
+// Solution
+
+S= 1/(Ifsd*10^-6); // Sensitivity of voltmeter in Ohms/V
+ // The value of multiplier resistance for different ranges
+
+// For 5V range
+Rs1= S*V1-Rm;
+
+// For 10V range
+Rs2= S*V2-Rm;
+// For 50V range
+Rs3=S*V3-Rm;
+
+printf(' The value of multiplier resistance for 0-5V , 0-10V and 0-50V range are \n %d k Ohms, %d k Ohms, %d k Ohms respectively \n ',Rs1/1000,Rs2/1000,Rs3/1000);
diff --git a/3554/CH4/EX4.6/Ex4_6.sce b/3554/CH4/EX4.6/Ex4_6.sce new file mode 100644 index 000000000..f5784d267 --- /dev/null +++ b/3554/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,36 @@ +// Exa 4.6
+
+clc;
+clear all;
+// Referring Fig. 4.6- Example on loading effect from page no.81
+
+// Given data
+R1=10000; // Ohms
+R2=10000;// Ohms
+V=100; // Applied Voltage
+
+// Solution
+
+VR2= R2/(R1+R2)* V;// True Voltage across R2 resistance
+printf('True voltage across R2 = %d V \n ',VR2);
+
+// Case-1 : Using a voltmeter 1 having sensitivity of 1000 Ohms/V
+
+S1=1000; // Sensitivity in Ohms/volt
+R21=S1*VR2; //R2 resistance on its 50 V range(Ohms)
+Req1=R21*R2/(R21+R2);// Equivalent resistance across R2(ohms)
+printf('Connecting the meter 1 across R2 causes an equivalent parallel resistance given by %.2f k Ohms \n ',Req1/1000);
+V21=Req1/(Req1+R2) * V;
+printf('Now the voltage across the total combination is given by %.2f V \n ',V21);
+
+// Case-2 : Using a voltmeter having sensitivity of 20,000 Ohms/V
+
+S22=20000; // Sensitivity in Ohms/volt
+R22=S22*VR2;// R2 resistance on its 50V range(Ohms)
+Req2=R22*R2/(R22+R2);// Equivalent resistance across R2(ohms)
+printf('Connecting the meter 2 across R2 causes an equivalent parallel resistance given by %.2f k Ohms \n ',Req2/1000);
+V22=Req2/(Req2+R2) * V;
+printf('Now the voltage across the total combination is given by %.2f V \n ',V22);
+
+disp(" This example shows that a high sensitivity voltmeter(i.e voltmeter 2 in this case) should be used to get accurate readings");
+// The answers vary due to riund off error.
diff --git a/3554/CH4/EX4.7/Ex4_7.sce b/3554/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..2ca177149 --- /dev/null +++ b/3554/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,40 @@ +// Exa 4.7
+
+clc;
+clear all;
+// Referring circuit given in fig. 4.7 on page no.81
+
+S1=1000; // Sensitivity of meter 1 (Ohms/volt)
+S2=20000;// Sensitivity of meter 2(Ohms/volt)
+Rm1=200;// Meter resistance(Ohms)
+Rm2=1500;// Meter resistance(Ohms)
+V1=10; // Range of voltmeter 1(Volts)
+V2=10;
+Ra=25000; // in Ohms
+Rb=5000;// in Ohms
+V=30; // Applied Voltage(V)
+
+//Solution
+
+VRb= Rb/(Ra+Rb) * V; // Voltage across Rb
+printf('The voltage across the resistance Rb, without either meter connected = %d V\n ',VRb);
+
+// For meter 1
+Rt1=S1* V1; // Total resistance of meter1
+
+Req1= Rb*Rt1/(Rb+Rt1); // Total resistance across Rb
+VRb1= Req1/(Req1+Ra) * V; // Voltage reading across Rb with meter1
+printf('The voltage across Rb when meter 1 is used is = %.2f V \n',VRb1);
+Err1=(VRb-VRb1)/VRb *100; // Voltmeter 1 error
+printf(' Voltmeter 1 error in percentage = %.1f \n ',Err1);
+
+// For meter 2
+
+Rt2=S2* V2; // Total resistance of meter 2
+
+Req2= Rb*Rt2/(Rb+Rt2); // Total resistance across Rb
+VRb2= Req2/(Req2+Ra) * V; // Voltage reading across Rb with meter2
+printf('The voltage across Rb when meter 2 is used is = %.1f V \n',VRb2);
+
+Err2=(VRb-VRb2)/VRb *100; // Voltmeter 2 error
+printf(' Voltmeter 2 error in percentage = %d \n ',Err2);
diff --git a/3554/CH4/EX4.8/Ex4_8.sce b/3554/CH4/EX4.8/Ex4_8.sce new file mode 100644 index 000000000..8fdcb708a --- /dev/null +++ b/3554/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,51 @@ +// Exa 4.8
+
+clc;
+clear all;
+
+// Given data
+
+Ra= 45; // in k Ohms
+Rb=5; // in k Ohms
+V=50; // Supplied Voltage(V)
+S=20; // sensitivity in k Ohms/V
+
+// Solution
+
+VRb=Rb/(Ra+Rb) * V;
+printf('The voltage drop across Rb without the voltmeter connected is = %d V\n',VRb);
+
+// On the 5V range
+Range1 = 5; // Volts
+
+Rm1=S*Range1;// k Ohms
+Req1=Rm1*Rb/(Rm1+Rb); // k Ohms
+VRb1=Req1/(Req1+Ra) *V; // Voltage across Rb on 5V range
+printf(' The voltmeter reading on 5V range is = %.3f V\n',VRb1);
+Err1=(VRb-VRb1)/VRb * 100;
+printf(' Percentage error on 5V range in percentage = %.2f \n',Err1);
+
+// On 10V range
+
+Range2 = 10; // Volts
+
+Rm2=S*Range2;// k Ohms
+Req2=Rm2*Rb/(Rm2+Rb); // k Ohms
+VRb2=Req2/(Req2+Ra) *V; // Voltage across Rb on 10V range
+printf(' The voltmeter reading on 10V range is = %.3f V\n',VRb2);
+Err2=(VRb-VRb2)/VRb * 100;
+printf(' Percentage error on 10V range in percentage = %.3f \n',Err2);
+
+// On 30V range
+
+Range3 = 30; // Volts
+
+Rm3=S*Range3;// k Ohms
+Req3=Rm3*Rb/(Rm3+Rb); // k Ohms
+VRb3=Req3/(Req3+Ra) *V; // Voltage across Rb on 30V range
+printf(' The voltmeter reading on 30V range is = %.3f V \n',VRb3);
+Err3=(VRb-VRb3)/VRb * 100;
+printf(' Percentage error on 30V range in percentage = %.1f \n',round(Err3));
+
+disp(" In this example, the 30V range introduces the least error due to loading. However, the voltage being measured causes only a 10% full scale deflection, whereas on the 10V range the applied voltage causes approximately a one third of the fullscale deflection with less than 3% error.");
+//The answers vary due to round off error
diff --git a/3554/CH4/EX4.9/Ex4_9.sce b/3554/CH4/EX4.9/Ex4_9.sce new file mode 100644 index 000000000..27b204e21 --- /dev/null +++ b/3554/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,18 @@ +// Exa 4.9
+
+clc;
+clear all;
+
+// Given data
+// As per values given in Fig.4.19(page no.94)
+
+ein=10; // Input RMS voltage(V)
+Ifsd=1; // Full scale deflection current(mA)
+Rm=200;// Internal resistance of voltmeter(Ohms)
+
+// Solution
+
+Range=0.45*ein; // Range of Voltmeter
+Sdc=1/(Ifsd*10^-3); // DC Sensitivity of meter movement(k Ohm/V)
+Rs=Sdc* Range-Rm;// Multiplier resistance(Ohm)
+printf(' The value of the multiplier resistor = %.1f k Ohms\n',Rs/1000);
|