summaryrefslogtreecommitdiff
path: root/3547/CH10
diff options
context:
space:
mode:
Diffstat (limited to '3547/CH10')
-rw-r--r--3547/CH10/EX10.1/EX10_1.pngbin0 -> 13817 bytes
-rw-r--r--3547/CH10/EX10.1/EX10_1.sce23
-rw-r--r--3547/CH10/EX10.2/EX10_2.pngbin0 -> 16622 bytes
-rw-r--r--3547/CH10/EX10.2/EX10_2.sce33
-rw-r--r--3547/CH10/EX10.3/EX10_3.pngbin0 -> 14020 bytes
-rw-r--r--3547/CH10/EX10.3/EX10_3.sce28
-rw-r--r--3547/CH10/EX10.4/EX10_4.pngbin0 -> 13445 bytes
-rw-r--r--3547/CH10/EX10.4/EX10_4.sce32
-rw-r--r--3547/CH10/EX10.5/EX10_5.pngbin0 -> 17452 bytes
-rw-r--r--3547/CH10/EX10.5/EX10_5.sce44
-rw-r--r--3547/CH10/EX10.6/EX10_6.pngbin0 -> 21407 bytes
-rw-r--r--3547/CH10/EX10.6/EX10_6.sce41
-rw-r--r--3547/CH10/EX10.7/EX10_7.pngbin0 -> 18413 bytes
-rw-r--r--3547/CH10/EX10.7/EX10_7.sce42
-rw-r--r--3547/CH10/EX10.8/EX10_8.pngbin0 -> 14648 bytes
-rw-r--r--3547/CH10/EX10.8/EX10_8.sce31
16 files changed, 274 insertions, 0 deletions
diff --git a/3547/CH10/EX10.1/EX10_1.png b/3547/CH10/EX10.1/EX10_1.png
new file mode 100644
index 000000000..6d982bd9e
--- /dev/null
+++ b/3547/CH10/EX10.1/EX10_1.png
Binary files differ
diff --git a/3547/CH10/EX10.1/EX10_1.sce b/3547/CH10/EX10.1/EX10_1.sce
new file mode 100644
index 000000000..2e3655c4a
--- /dev/null
+++ b/3547/CH10/EX10.1/EX10_1.sce
@@ -0,0 +1,23 @@
+// Example 10.1
+// Calculation of the non linear coeffifient.
+// Page no 429
+
+clc;
+clear;
+close;
+
+//Given data
+n2=2.5*10^-20; // Kerr coefficient
+lambda=1550*10^-9; // Wavelength
+A=80*10^-12; // Effective area
+
+
+
+// Non linear coeffifient
+g=(n2*2*%pi)/(lambda*A);
+g=g*10^3;
+
+
+//Displaying results in the command window
+printf("\n Nonlinear coefficient = %0.3f W^-1m^-1 ",g);
+
diff --git a/3547/CH10/EX10.2/EX10_2.png b/3547/CH10/EX10.2/EX10_2.png
new file mode 100644
index 000000000..0593bffff
--- /dev/null
+++ b/3547/CH10/EX10.2/EX10_2.png
Binary files differ
diff --git a/3547/CH10/EX10.2/EX10_2.sce b/3547/CH10/EX10.2/EX10_2.sce
new file mode 100644
index 000000000..e0622813b
--- /dev/null
+++ b/3547/CH10/EX10.2/EX10_2.sce
@@ -0,0 +1,33 @@
+// Example 10.2
+// Calculation of the lower limit on the effective area of the fiber.
+// Page no 431
+
+clc;
+clear;
+close;
+
+//Given data
+
+c=3*10^8; // Velocity of light
+tl=1000*10^3; // Total length
+as=100*10^3; // Amplifier spacing
+alpha=0.046*10^-3; // Loss coefficient
+L=100*10^3;
+n2=2.5*10^-20; // Kerr coefficient
+p=0; // Peak power at the fiber input
+lambda=1550*10^-9; // Operating frequency
+
+// The peak power required to form a soliton
+Le=(1-exp(-alpha*L))/alpha;
+n=tl/as;
+p=10^(p/10);
+r=0.5/(Le*p);
+A=(2*%pi*n2)/(lambda*r);
+A=A*10^12;
+
+// Displaying results in the command window
+printf("\n The lower limit on the effective area of the fiber = %0.2f micrometer^2",A*10^-2);
+printf("\n The effective area should be greater than 43.62 μm2 to have the peak nonlinear phase shift less than or equal to 0.5 rad.");
+
+
+// The answers vary due to round off error
diff --git a/3547/CH10/EX10.3/EX10_3.png b/3547/CH10/EX10.3/EX10_3.png
new file mode 100644
index 000000000..1b0de6661
--- /dev/null
+++ b/3547/CH10/EX10.3/EX10_3.png
Binary files differ
diff --git a/3547/CH10/EX10.3/EX10_3.sce b/3547/CH10/EX10.3/EX10_3.sce
new file mode 100644
index 000000000..47b297c99
--- /dev/null
+++ b/3547/CH10/EX10.3/EX10_3.sce
@@ -0,0 +1,28 @@
+// Example 10.3
+// Calculation of the peak power required to form a soliton
+// Page no 435
+
+clc;
+clear;
+close;
+
+//Given data
+
+b=-21*10^-27; // FWHM of a fundamental soliton
+Tf=50*10^-12; // Fiber dispersion coefficient
+r=1.1*10^-3; // Nonlinear coefficient
+
+// The peak power required to form a soliton
+Th=asech(sqrt(0.5));
+f=2*Th;
+T0=Tf/f;
+n=(sqrt(-b))/T0;
+P=(n^2)/r;
+//P=P*10^2;
+
+
+// Displaying results in the command window
+printf("\n The peak power required to form a soliton = %0.1f mW",P*10^2);
+
+// Answer is wrong in book
+
diff --git a/3547/CH10/EX10.4/EX10_4.png b/3547/CH10/EX10.4/EX10_4.png
new file mode 100644
index 000000000..a4ae8a39a
--- /dev/null
+++ b/3547/CH10/EX10.4/EX10_4.png
Binary files differ
diff --git a/3547/CH10/EX10.4/EX10_4.sce b/3547/CH10/EX10.4/EX10_4.sce
new file mode 100644
index 000000000..37dcd1979
--- /dev/null
+++ b/3547/CH10/EX10.4/EX10_4.sce
@@ -0,0 +1,32 @@
+// Example 10.4
+// Calculation of the peak power required to form a soliton
+// Page no 444
+
+clc;
+clear;
+close;
+
+// Given data
+
+c=3*10^8; // Velocity of light
+S=0.06*10^3; // Dispersion slope
+D=17*10^-6; // Dispersion coefficient
+lambda=1550*10^-9; // Signal Wavelength
+lc=1550*10^-9; // Signal Wavelength
+lp=1549.6*10^-9; // Pump wavelength
+l=50*10^3; // Length
+r=2*%pi*10^10;
+alpha=0.046*10^-3; // Loss coefficient
+
+// The peak power required to form a soliton
+b3=S*(lambda^2/(2*%pi*c))+D*(lambda^3/(2*%pi^2*c^2));
+b2=-(D*lambda^2)/(2*%pi*c);
+o=2*%pi*(c/lp-c/lc);
+d=(b2*o)+(b3*o^2)/2;
+n=alpha^2/alpha^2*r*4*d^2*(1+(4*(sin(r*d*l))^2*%e^(-alpha*l))/(1-%e^(-alpha*l)^2));
+n=n*10^-18;
+// Displaying results in the command window
+printf("\n XPM efficiency = %0.3f *10^-3",n);
+
+
+// The answers vary due to round off error
diff --git a/3547/CH10/EX10.5/EX10_5.png b/3547/CH10/EX10.5/EX10_5.png
new file mode 100644
index 000000000..41b2061e2
--- /dev/null
+++ b/3547/CH10/EX10.5/EX10_5.png
Binary files differ
diff --git a/3547/CH10/EX10.5/EX10_5.sce b/3547/CH10/EX10.5/EX10_5.sce
new file mode 100644
index 000000000..19e002372
--- /dev/null
+++ b/3547/CH10/EX10.5/EX10_5.sce
@@ -0,0 +1,44 @@
+// Example 10.5
+// Calculate the efficiency of the non-degenerate FWM tone at −2Δf if (a) beta2 = −4ps^2/km, (b) beta2 = 0ps^2/km.
+// Page no 453
+
+clc;
+clear;
+close;
+
+//Given data
+f=50*10^9; // The bandwidth
+alpha= 0.046*10^-3; // The fiber loss coefficient
+L=40*10^3; // The fiber length
+
+Leff=(1-exp(-(alpha*L)))/alpha; // Effective fiber length
+
+// (a) Calculate the efficiency of the non-degenerate FWM tone at −2Δf beta2 = −4ps^2/km
+bet21=-4*10^(-12);
+j=-1;
+k=0;
+l=1;
+n=j+k-l;
+
+bet1=bet21*10^(-12)/10^(3)*(2*%pi*f)^2*n;
+
+//The efficiency of the non-degenerate FWM tone
+neta1=(alpha^2+4*exp(-alpha*L*10^3)*(sind(bet1*(L*10^3)/2))/Leff^2)/(alpha^2+bet1^2);
+
+//Displaying results in the command window
+printf("\n The efficiency of the non-degenerate FWM tone at −2Δf (beta2 = −4ps^2/km) = %0.1f X 10^(-3) ",neta1*10^3);
+
+// (b) Calculate the efficiency of the non-degenerate FWM tone at −2Δf beta2 = 0ps^2/km
+bet22=0*10^(-12);
+j=-1;
+k=0;
+l=1;
+n=j+k-l;
+
+bet2=bet22*10^(-12)/10^(3)*(2*%pi*f)^2*n;
+
+//The efficiency of the non-degenerate FWM tone
+neta2=(alpha^2+4*exp(-alpha*L*10^3)*(sind(bet2*(L*10^3)/2))/Leff^2)/(alpha^2+bet2^2);
+
+//Displaying results in the command window
+printf("\n\n The efficiency of the non-degenerate FWM tone at −2Δf (beta2 = 0ps^2/km) = %0.0f ",neta2);
diff --git a/3547/CH10/EX10.6/EX10_6.png b/3547/CH10/EX10.6/EX10_6.png
new file mode 100644
index 000000000..e0189e4f6
--- /dev/null
+++ b/3547/CH10/EX10.6/EX10_6.png
Binary files differ
diff --git a/3547/CH10/EX10.6/EX10_6.sce b/3547/CH10/EX10.6/EX10_6.sce
new file mode 100644
index 000000000..1d641faf7
--- /dev/null
+++ b/3547/CH10/EX10.6/EX10_6.sce
@@ -0,0 +1,41 @@
+// Example 10.6
+// to find the nonlinear phase shift at the center of the pulse. Compare the exact results with those obtained using first and second-order perturbation theory
+// Page no 469
+
+clc;
+clear;
+close;
+
+//Given data
+P=6*10^(-3); // The peak power of rectangular pulse
+L=40*10^3; // Fiber of length
+Floss=0.2; // The fiber loss (dB/Km)
+gamm=1.1*10^(-3);
+
+alpha=Floss/4.343; // Attenuation coefficient
+Zeff=(1-exp(-alpha*10^(-3)*L))/alpha*10^3;
+
+// The nonlinear phase shift at the center of the pulse
+phi=gamm*P*Zeff; // Nonlinear phase shift
+
+//Displaying results in the command window
+printf("\n The nonlinear phase shift at the center of the pulse = %0.4f rad ",phi);
+
+
+// Results using first order
+B01=sqrt(1+gamm^2*P^2*(Zeff)^2); // Amplitude shift
+thet1=atan(gamm*P*Zeff); // Non-linear phase shift
+
+//Displaying results in the command window
+printf("\n\n Amplitude shift using first order = %0.3f ",B01);
+printf("\n Non-linear shift using first order = %0.5f rad",thet1);
+
+// Results using second order
+x=1-((gamm)^2/2*P^2*Zeff^2);
+y=gamm*P*Zeff;
+thet2=atan(y/x); // Nonlinear phase shift
+B02=x/cos(thet2); // Amplitude shift
+
+//Displaying results in the command window
+printf("\n\n Amplitude shift using second order = %0.5f ",B02); // Answer is varying due to round-off error
+printf("\n Non-linear shift using second order = %0.5f rad",thet2); // Answer is varying due to round-off error
diff --git a/3547/CH10/EX10.7/EX10_7.png b/3547/CH10/EX10.7/EX10_7.png
new file mode 100644
index 000000000..594094fd8
--- /dev/null
+++ b/3547/CH10/EX10.7/EX10_7.png
Binary files differ
diff --git a/3547/CH10/EX10.7/EX10_7.sce b/3547/CH10/EX10.7/EX10_7.sce
new file mode 100644
index 000000000..ef8dc9d80
--- /dev/null
+++ b/3547/CH10/EX10.7/EX10_7.sce
@@ -0,0 +1,42 @@
+// Example 10.7
+// Calculation of the variance of (a) linear phase noise, (b) nonlinear phase noise at the receiver
+// Page no 477
+
+clc;
+clear;
+close;
+
+//Given data
+
+alpha=0.0461; // Loss coeffient
+na=20; // No of amplifiers
+L=80; // Amplifier spacing
+tb=25*10^-12; // Pulse width
+P=2*10^-3; // Peak power
+c=3*10^8; // Velocity of light
+lambda=1550*10^-9;
+n=1.5; // Spontaneous emission factor
+h=6.626*10^-34; // Planck constant
+r0=1.1*10^-3; // Nonlinear coefficient
+
+// a) linear phase noise at the receiver
+G=exp(alpha*L);
+f=c/lambda;
+R=h*f*(G-1)*n;
+E=P*tb;
+rl=(na*R)/(2*E);
+rl=rl*10^3;
+
+// (b) nonlinear phase noise at the receiver
+Le=(1-exp(-alpha*L))/alpha;
+rnl=((na-1)*na*(2*na-1)*R*E*r0^2*Le^2)/(3*tb^2);
+rnl=rnl*10^9;
+
+t=rl+rnl;
+
+//Displaying results in the command window
+printf("\n The linear phase noise at the receiver = %0.2f rad^2 ",rl);
+printf("\n The nonlinear phase noise at the receiver = %0.2f rad^2 ",rnl);
+printf("\n The total variance = %0.2f X 10^-3 rad^2 ",t);
+
+
diff --git a/3547/CH10/EX10.8/EX10_8.png b/3547/CH10/EX10.8/EX10_8.png
new file mode 100644
index 000000000..cadc7336a
--- /dev/null
+++ b/3547/CH10/EX10.8/EX10_8.png
Binary files differ
diff --git a/3547/CH10/EX10.8/EX10_8.sce b/3547/CH10/EX10.8/EX10_8.sce
new file mode 100644
index 000000000..20982607c
--- /dev/null
+++ b/3547/CH10/EX10.8/EX10_8.sce
@@ -0,0 +1,31 @@
+// Example 10.8
+// Calculation of the Stokes signal power at the fiber output
+// Page no 480
+
+clc;
+clear;
+close;
+
+//Given data
+p1=20; // Input power pump
+ps=-10; // Input Stokes’s signal power
+alpha=0.08;
+L=2; // Length of fiber
+alpha1=0.046;
+A=40*10^-12; // Effective area of fiber
+g=1*10^-13; // Raman coefficient of the fiber
+
+// The Stokes signal power at the fiber output
+p1=10^(p1/10);
+ps=10^(ps/10);
+Le=(1-exp(-alpha*L))/alpha;
+s=(g*p1*Le)/A;
+d=alpha1*L;
+pd=ps*%e^(-d+s);
+
+
+
+// Displaying results in the command window
+printf("\n The Stokes signal power at the fiber output = %0.15f mW ",pd);
+
+