diff options
Diffstat (limited to '3535/CH2')
-rw-r--r-- | 3535/CH2/EX2.1/Ex2_1.sce | 10 | ||||
-rw-r--r-- | 3535/CH2/EX2.2/Ex2_2.sce | 14 | ||||
-rw-r--r-- | 3535/CH2/EX2.3/Ex2_3.sce | 13 | ||||
-rw-r--r-- | 3535/CH2/EX2.4/Ex2_4.sce | 12 |
4 files changed, 49 insertions, 0 deletions
diff --git a/3535/CH2/EX2.1/Ex2_1.sce b/3535/CH2/EX2.1/Ex2_1.sce new file mode 100644 index 000000000..d656369f7 --- /dev/null +++ b/3535/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,10 @@ +//Chapter 2, Example 2.1, Page 29 +clc +clear +//Find the inscrease in mass of the Satellite +v = 7.5*10**3 +c = 2.998*10**8 +//Calculating the expression using the taylor series +FMI = (1/2)*(v**2/c**2) +printf("The fractional mass increase = %e",FMI); +//Answers may vary due to round off error diff --git a/3535/CH2/EX2.2/Ex2_2.sce b/3535/CH2/EX2.2/Ex2_2.sce new file mode 100644 index 000000000..462741b51 --- /dev/null +++ b/3535/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,14 @@ +//Chapter 2, Example 2.2, Page 33 +clc +clear +//Find the energy equivalent in MeV of the electron rest mass +m1 = 9.109*10**-31 // kg +m2 = 5.486*10**-4 // atomic mass units +c1 = 2.998*10**8 // m/s +c2 = 931.49 // MeV/u +E1 = (m1*c1*c1)/(1.602*10**-13) +E2 = m2*c2 +printf("E = %f MeV",E1); +printf("\n E measured in atomic mass unit and appropriate conversion factor= %f MeV",E2); + +//Answers may vary due to round off error diff --git a/3535/CH2/EX2.3/Ex2_3.sce b/3535/CH2/EX2.3/Ex2_3.sce new file mode 100644 index 000000000..f9798dba3 --- /dev/null +++ b/3535/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,13 @@ +//Chapter 2, Example 2.3, Page 37 +clc +clear +//maximum wavelength of light required to liberate photoelectrons +A = 2.35 //eV +h = 4.136*10**-15 // eV/s^-1 +c = 2.998*10**8 // m/s +v = A/h +w = c/v +printf("v-min = %e s^-1",v); +printf("\n Maximum wavelength = %f nm which corresponds to green",w*10**9); + +//Answers may vary due to round off error diff --git a/3535/CH2/EX2.4/Ex2_4.sce b/3535/CH2/EX2.4/Ex2_4.sce new file mode 100644 index 000000000..040b6a860 --- /dev/null +++ b/3535/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,12 @@ +//Chapter 2, Example 2.4, Page 39 +clc +clear +//Recoil Kinetic Energy +m1 = 9.109*10**-31 // kg +c1 = 2.998*10**8 // m/s +E = 3 //Mev +mc2 = (m1*c1*c1)/(1.602*10**-13) // converting to MeV +E1 = 1/((1/E)+(1/mc2)*(1-cos(%pi/4))) +printf("\n Recoil kinetic energy = %f MeV",E1); + +//Answers may vary due to round off error |