diff options
Diffstat (limited to '3516/CH13/EX13.6')
-rw-r--r-- | 3516/CH13/EX13.6/Ex13_6.sce | 357 |
1 files changed, 357 insertions, 0 deletions
diff --git a/3516/CH13/EX13.6/Ex13_6.sce b/3516/CH13/EX13.6/Ex13_6.sce new file mode 100644 index 000000000..221b17a55 --- /dev/null +++ b/3516/CH13/EX13.6/Ex13_6.sce @@ -0,0 +1,357 @@ +printf("\t example 13.6a \n");
+printf("\t approximate values are mentioned in the book \n");
+
+ds=[0 10 20 30 40 50 60 70 80 90 100];
+tmp=[90 145 180 208 234 260 286 312 338 367 400];
+clf();
+subplot(3,2,1);
+plot2d(ds,tmp,style=2,rect=[0,80,100,400]);
+xtitle("Plot of ASTM curve",boxed=1);
+xlabel("Per cent distilled off");
+ylabel("Temperature °F");
+
+//From the plotted ASTM curve and reference line
+s = (312-145)/60; // (70% - 10%)/60%
+printf("\tSlope of ASTm = %.2f °F\n",s);
+ap = (180+260+338)/3; // (20% +50% +80%)/3
+printf("\tAverage 50prcnt point = %.1f °F\n",ap);
+
+fc = 38; //°F, from Fig.13.8
+printf("\t50prcnt point ASTM = 50prcnt point flash curve = %.0f °F\n",fc);
+fc1 = ap - fc; //°F, fixing first point on EFC
+printf("\t50prcnt on EFC = %.0f °F\n",fc1);
+
+s1 = 1.65; // (°F/%) from fig 13.10, upper curve
+ten = 221 - 40*s1; //
+printf("\t10prcnt on EFC = 50prcnt - 40prcnt = %.0f °F\n",ten);
+sty = 221 + 20*s1; //
+printf("\t70prcnt on EFC = 50prcnt + 20prcnt %.0f °F\n",sty);
+
+//Draw this line as a reference through the 50% point. Calculate the flash curve for different percentages off
+
+//0% off
+printf("\n\t0 prcnt off:\n");
+dela = 90 - 117; // Step (8)
+printf("\t\tDelT ASTM = %.0f °F\n",dela);
+delE = dela * 0.50; // Step (9)
+printf("\t\tDelT EFC = %.1f °F\n",delE);
+FE = 139 - delE; // Step (10)
+printf("\t\t°F EFC = %.1f\n",FE);
+//end
+ov=13300; //lb/hr
+ng=90;//lb/hr
+mng=50;// mol. wt
+st=370;//lb/hr
+avG=50;//°F API
+//For 80%
+ouc=ov*0.80;//lb/hr
+printf("\toil uncondensed = %.0f lb/hr\n",ouc);
+avB=269;//°F,from Fig. 13.13
+printf("\tAverage boiling point from the EFC at 1 atm = %.0f°F\n",avB);
+avB1=avB+17;//°F,from Fig. 13.13
+printf("\tAverage boiling point from the EFC at 19.7 psia = %.0f°F\n",avB1);
+mwt=113;//mol. wt
+mtoc=ouc/mwt;
+printf("\tThe moles of oil still to be condensed = %.1f\n",mtoc);
+mg1=ng/mng;
+ms1=st/18;
+tm=mg1+ms1+mtoc;
+printf("\t\tMols gas = %.2f\n\t\tMols steam = %.1f\n",mg1,ms1);
+printf("\t\t\t -----\n\t\tMols total = %.1f\n",tm);
+tp=19.7;//psia
+poil=(mtoc/tm)*tp;//psia
+printf("\tPartial pressure of oil = %.1f psia\n",poil);
+pgas=(mg1/tm)*tp;//psia
+printf("\tPartial pressure of NC gas = %.3f psia\n",pgas);
+tm(1)=95;//°F
+tm(2)=127;//°F
+tm(3)=163;//°F
+tm(4)=205;//°F
+tm(5)=240;//°F
+pp(1)=6.73;
+pp(2)=9.40;
+pp(3)=12.25;
+pp(4)=14.64;
+pp(5)=15.65;
+psat(1)=0.815;//From steam table
+psat(2)=2.050;//From steam table
+psat(3)=5.09;//From steam table
+psat(4)=12.77;//From steam table
+psat(5)=24.97;//From steam table
+printf("\n\t\tCALCULATION OF DEW POINT OF THE STEAM\n");
+printf("\tT,°F\t[pt - (poil+pNC)] = psteam\tpsat(steam tables)\n");
+i=1;
+while(i<6)
+ ps=tp-pp(i);
+ printf("\t"+string(tm(i))+"\t%.1f\t %.2f\t\t%.2f\t%.3f\n",tp,pp(i),ps,psat(i));
+ i=i+1;
+end
+subplot(3,2,2);
+plot2d(psat,tm,style=3,rect=[0,25,90,250]);
+xtitle("Computed pressure of steam",boxed=1);
+xlabel("Pressure of steam, psi");
+ylabel("Temperature °F");
+
+ds=6.417;//psia,at 173°F,
+printf("\tAt 173°F, the dew point of steam, psat = %.3f psia\n",ds);
+pd1=tp-ds;//psia
+printf("\tpoil + pNC = %.2f psia\n",pd1);
+x=((tp*ms1)/ds)-(ms1+mg1);// mols oil
+printf("\tOil = %.2f mols oil\n",x);
+mw=85;//From fig. 13.14
+printf("\tThe molecular weight of the vapors is %.0f\n",mw);
+lv=x*mw;//lb
+printf("\tLb/hr vapor = %.0f\n",lv);
+prc=((ov-lv)*100)/ov;//%
+printf("\tpercent Condensed = %.0f\n",prc);
+printf("\n\t\t\tOIL CONDENSING CURVE\n");
+printf("\tprcnt\tCondensables\t\tAv BP on EFC\t\t50° API\t\tMol oil\t\tMol NC gas\tMol steam\tMol total\tTotal pressure\tPartial pressure\tPartial pressure\tCond temp,°F\n\t\tlb.hr\t\t14.7 psia °F\t19.7 psia,°F\tmol.wt\t\t\t\t\t\t\t\t\t\tpsia\t\toil,psia\t\tNC gas, psia\n");
+mo(1)=107.5;
+mo(2)=94.3;
+mo(3)=77.7;
+mo(4)=57.4;
+mo(5)=31.8;
+mo(6)=17.1;
+mo(7)=8.9;
+i=1;
+while(i<8)
+ mt(i)=mo(i)+mg1+ms1;
+ ppo(i)=(mo(i)/mt(i))*tp;
+ ppg(i)=(mg1/mt(i))*tp;
+ i=i+1;
+end
+printf("\t---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n");
+printf("\t100\t13330\t\t300\t\t317\t\t124\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t305\n",mo(1),mt(1),ppo(1),ppg(1));
+printf("\t80\t10664\t\t269\t\t286\t\t113\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t277\n",mo(2),mt(2),ppo(2),ppg(2));
+printf("\t60\t7998\t\t239\t\t256\t\t103\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t240\n",mo(3),mt(3),ppo(3),ppg(3));
+printf("\t40\t5332\t\t207\t\t224\t\t93\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t205\n",mo(4),mt(4),ppo(4),ppg(4));
+printf("\t20\t2666\t\t178\t\t195\t\t84\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t163\n",mo(5),mt(5),ppo(5),ppg(5));
+printf("\t10\t1333\t\t155\t\t172\t\t78\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t127\n",mo(6),mt(6),ppo(6),ppg(6));
+printf("\t5\t667\t\t141\t\t158\t\t75\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t95\n",mo(7),mt(7),ppo(7),ppg(7));
+
+//Trail 1:
+m=78;//50° API mol. wt. for condesables 1333
+vap=(ov*0.10)/78;//Mol/hr
+printf("\n\t\t\t\tMol/hr\n\tOil vapor\t\t%.1f\n\tNC gas\t\t\t%.1f\n\tSteam\t\t\tX\n\tTotal\t\t\t18.9+X\n",vap,mg1);
+vap1=vap+mg1;//Mol/hr
+psteam=5.09;//psia, For 163°F
+x1=(psteam*vap1)/(tp-psteam);//mols steam
+printf("\tX = %.2f mols steam\n",x1);
+tv=vap1+x1;
+printf("\n\t\t\tMol/hr\tmf\tmf*pt = p-partial\n");
+mf1=vap/(tv);
+ppar1=mf1*tp;
+printf("\tOil vapor\t%.1f\t%.3f\t%.2f\n",vap,mf1,ppar1);
+mf2=mg1/tv;
+ppar2=mf2*tp;
+printf("\tNC gas\t\t%.1f\t%.3f\t%.2f\n",mg1,mf2,ppar2);
+mf3=x1/tv;
+ppar3=mf3*tp;
+printf("\tSteam\t\t%.2f\t%.3f\t%.2f\n",x1,mf3,ppar3);
+tot1=vap+mg1+x1;
+tot2=mf1+mf2+mf3;
+tot3=ppar1+ppar2+ppar3;
+printf("\tTotal\t\t%.2f\t%.3f\t%.2f\n",tot1,tot2,tot3);
+//Error was found. So trail 2 is done in a similar way
+printf("\n\tSimilarly,\n\tT,°F\tOil cond, prcnt\tOil cond, lb\tSteam cond,lb\n");
+printf("\t173\t74\t\t9863\t\t0\n\t163\t85\t\t11350\t\t204\n\t127\t97.5\t\t13000\t\t357\n\t95\t100\t\t13330\t\t370\n");
+//Condensing curve
+printf("\n\t\t\tOil\t\t\t\tSteam\n\t-----------------------------------------------------------------\n\tTc,°F\tHv,vapor\tHl,liquid\tHg or Hv,\tHl,liquid\n\t\t\t\t\t\tgas or vapor\n");
+printf("\t-----------------------------------------------------------------\n")
+printf("\t305\t368\t\t242\t\t1197.0\t\tSuperheated\n\t277\t359\t\t225\t\t1184.1\t\tSuperheated\n\t240\t337\t\t204\t\t1167.0\t\tSuperheated\n\t205\t322\t\t185\t\t1150.6\t\tSuperheated\n\t173\t310\t\t168\t\t1135.4\t\t140.9\n");//From fig.11 in Appendix and steam tables
+//Heat load
+//305°F:
+hvv=368;
+hvg=1197.0;
+olv=ov*hvv;
+stm=st*hvg;
+ncg=ng*(0.46*273);
+thh=olv+stm+ncg;
+printf("\n\t\t\t\tH\t\tq\n");
+printf("\tOil vapor\t\t%.2e\n\tSteam\t\t\t%.2e\n\tNC gas\t\t\t%.2e\n\t\t\t\t--------\n\t\t\t\t%.4e\t0\n",olv,stm,ncg,thh);
+//Similarily at other temperatures
+ttp(1)=305;//°F
+ttp(2)=277;//°F
+ttp(3)=240//°F
+ttp(4)=205;//°F
+ttp(5)=173;//°F, Dew point of steam
+ttp(6)=163;//°F
+ttp(7)=127;//°F
+ttp(8)=95;//°F
+
+hld(1)=0;//million Btu
+hld(2)=0.55;//milllion Btu
+hld(3)=1.2;//million Btu
+hld(4)=1.75;//million Btu
+hld(5)=2.3;//million Btu
+hld(6)=2.73;//million Btu
+hld(7)=3.3;//million Btu
+hld(8)=3.66;//million Btu
+subplot(2,2,3);
+plot2d(hld,ttp,style=6,rect=[0,60,3.8,320]);
+xtitle("Condensation of mixed hydrocarbons with gas and steam",boxed=1);
+xlabel("Heat load, million Btu");
+ylabel("Temperature °F");
+//summary
+dp=3042800;//Btu/hr
+ttt=3638400;//Btu/hr
+i2s=thh-dp;//Btu/hr
+printf("\tInlet to steam dew point = %.4eBtu/hr\n",i2s);
+so=dp-1735900;//Btu/hr
+printf("\tSteam dew point to outlet = %.4e Btu/hr\n",so);
+totl=i2s+so;//Btu/hr
+printf("\tTotal\t\t\t= %.4e Btu/hr\n",totl);
+twa=ttt/(120-85);
+printf("\tTotal water = %.2e lb/hr\n",twa);
+wt=85+((1306900/ttt)*35);//°F
+printf("\tWater temperature at dew point of steam = %.0f°F\n",wt);
+//Weighted true temperature difference, delT:
+ //Inlet to dew point of steam:
+delq=2331500;
+delt1=122.2;
+UA1=delq/delt1;
+printf("\tUA = %.0f\n",UA1);
+printf("\n\tDew point of steam to oulet\n");
+printf("\tq\tdelq\tTc\ttw\tdelTav\t(delq/delTav) = UA\n");
+printf("\t----------------------------------------------------------\n");
+q(1)=2331500;
+q(2)=2500000;
+q(3)=2750000;
+q(4)=3000000;
+q(5)=3250000;
+q(6)=3500000;
+q(7)=3638000;
+i=1;
+while(i<7)
+ dq(i)=q(i+1)-q(i);
+ i=i+1;
+end
+dpt(1)=173;
+dpt(2)=169;
+dpt(3)=161;
+dpt(4)=149;
+dpt(5)=134;
+dpt(6)=112;
+dpt(7)=95;
+dtw(1)=97.5;
+dtw(2)=96;
+dtw(3)=93;
+dtw(4)=91;
+dtw(5)=89;
+dtw(6)=86;
+dtw(7)=85;
+i=1;
+tua=0;
+while(i<7)
+ dpdelt(i)=((dpt(i+1)-dtw(i+1))+(dpt(i)-dtw(i)))/2;
+ UA(i)=dq(i)/dpdelt(i);
+ tua=tua+UA(i);
+ i=i+1;
+end
+printf("\t2331500\t......\t173\t173\t97.5\n");
+i=1;
+while(i<7)
+ printf("\t"+string(q(i+1))+"\t"+string(dq(i))+"\t"+string(dpt(i+1))+"\t"+string(dtw(i+1))+"\t"+string(dpdelt(i))+"\t%.0f\n",UA(i));//from Fig. 13.16
+i=i+1;
+end
+
+printf("\t\t\t\t\t\t%.0f\tUA = sigma{delq/delt}\n",tua);
+wdt=1306900/tua;//°F
+printf("\tWeighted delt = %.1f°F\n",wdt);
+owdt=ttt/(tua+UA1);//°F
+printf("\tOverall weighted temperature difference = %.1f °F\n",owdt);
+printf("\tThe uncorrected LMTD is 60.1°F\n");
+//end
+
+
+printf("\t example 13.6b \n");
+printf("\t approximate values are mentioned in the book \n");
+
+// EXCHANGER
+//Shell side
+Id = 27; // inches
+Bs = 16; // inches
+Ps = 1; // passes
+
+//Tube side
+N = 286; // number
+l = 12; // inches
+Od = 1; // inch
+BWG = 14; // bWG
+Ptc = 1.25; //inches
+Ps1 = 8; // passes
+
+//Clesan surface requirements
+
+//Head load inlet to dew point of steam
+st = 2331500; // Btu/hr
+delT = 122.2 // °F
+hio = 700; // Btu/((hr)(ft^2)(°F)) for water
+
+//From table 13.4 at inlet
+NC = 1.8; //NC gas, mol/hr
+sm = 20.6;// steam, mol/hr
+tt = NC + sm;// mol/hr
+printf("\tNC gas + steam is %.1f mol/hr\n",tt);
+pN = tt/129.9; // mol/hr
+printf("\tpercentage NC gas is %.4f\n",pN);
+
+//From Fig 13.17
+hn = 205; //Btu/((hr)(ft^2)(°F))
+//At dew point of steam
+No=40.75; // Mol/hr
+t1 = tt + No; // Mol/hr, total
+pN1 = tt/t1; // Mol/hr, %NC
+printf("\tpercentage NC is %.3f\n",pN1);
+
+//From fig 13.7
+hn1 = 140; //Btu/((hr)(ft^2)(°F))
+lm = 136.5; //Btu/((hr)(ft^2)(°F))
+delT = 122.2; // °F
+Ac1 = st/(lm * delT); // ft^2
+printf("\tAc1 = Q/(U * delT) is %.1f ft^2\n",Ac1);
+
+//At dew point of steam to oulet
+sm1 = 20.64; // Mol/hr , Steam
+t2 = NC + sm1; // total, Mol/hr
+printf("\tNC gas + steam is %.1f mol/hr\n",t2);
+pN1 = NC/t2; // % NC gas
+printf("\tpercentage NC gas is %.3f \n",pN1);
+
+Uc = 212; // From Fig 13.17, weighted for oil and steam
+
+//At outlet, steam = negligible
+
+Uc = 15;//From Fig 13.17
+
+//Log mean overall coefficient
+lm = 74.5; // Btu/((hr)(ft^2)(°F)) , From Fig 13.17
+delT = 44.8; // °F
+Ac2 = 1306900/(lm * delT);
+printf("\tAc2 is %.0f ft^2\n",Ac2);
+
+hl = 770000; // Btu/hr
+printf("\tHeat of Liquid(50°API) is %.1ef\n",hl);
+wr = (hl/3638400)*35; // °F
+printf("\tWater rise = %.1f °F\n",wr);
+
+LMTD = 66.3; //°F
+U1=50 //for free convection
+As = hl/(U1*LMTD);// ft^2
+printf("\tAs = %.1f ft^2\n",As);
+Ac = Ac1 + Ac2 + As; //ft^2
+printf("\tTotal clean surface %.0f ft^2\n",Ac);
+
+Uc = 3638400/(Ac * 75.5); // Btu/((hr)(ft^2)(°F))
+printf("\tClean overall coefficient Uc = %.1f Btu/((hr)(ft^2)(°F))\n",Uc);
+
+x = 0.2618; // ft, from table 10
+A = N * l * x; //ft^2
+Ud = 3638400/(A * 75.5);
+printf("\tDesign coefficient Ud is %.1f\n",Ud);
+Rd =(Uc - Ud)/(Uc * Ud); // ((hr)(ft^2)(°F))/Btu
+printf("\tDirt factor Rd is %.4f ((hr)(ft^2)(°F))/Btu\n",Rd);
+
+yo = (As/Ac)*A; // ft^2
+printf("\tSubmerge = %.0f ft^2 of surface\n",yo);
+//end
|