summaryrefslogtreecommitdiff
path: root/3511/CH7
diff options
context:
space:
mode:
Diffstat (limited to '3511/CH7')
-rw-r--r--3511/CH7/EX7.1/Ex7_1.sce13
-rw-r--r--3511/CH7/EX7.10/Ex7_10.sce33
-rw-r--r--3511/CH7/EX7.2/Ex7_2.sce44
-rw-r--r--3511/CH7/EX7.3/Ex7_3.sce14
-rw-r--r--3511/CH7/EX7.4/Ex7_4.sce13
-rw-r--r--3511/CH7/EX7.5/Ex7_5.sce41
-rw-r--r--3511/CH7/EX7.6/Ex7_6.sce31
-rw-r--r--3511/CH7/EX7.7/Ex7_7.sce33
-rw-r--r--3511/CH7/EX7.8/Ex7_8.sce42
-rw-r--r--3511/CH7/EX7.9/Ex7_9.sce47
10 files changed, 311 insertions, 0 deletions
diff --git a/3511/CH7/EX7.1/Ex7_1.sce b/3511/CH7/EX7.1/Ex7_1.sce
new file mode 100644
index 000000000..ea1631c34
--- /dev/null
+++ b/3511/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,13 @@
+clc;
+CV=43; // Calorific value of fuel in MJ/kg
+mf=0.18*9000/3600; // Fuel consumption in kg/s
+F=9; // Thrust in kN
+ci=500; // Aircraft velocity in m/s
+ma=27; // Mass of air passing through compressor in kg/s
+
+A_F=ma/mf; // Air fuel ratio
+PT=F*ci; // Thrust power
+Q=mf*(CV*10^3); // Heat supplied
+eff=PT/Q; // Overall efficiency
+disp (A_F,"Air fuel ratio = ");
+disp ("%",eff*100,"Overall efficiency = ");
diff --git a/3511/CH7/EX7.10/Ex7_10.sce b/3511/CH7/EX7.10/Ex7_10.sce
new file mode 100644
index 000000000..0a49eacc5
--- /dev/null
+++ b/3511/CH7/EX7.10/Ex7_10.sce
@@ -0,0 +1,33 @@
+clc;
+ma=(12*10^4)/3600; // Air flow rate in kg/s
+T01=15+273; // Temperature in kelvin
+rp=4; // pressure ratio
+p01=1.03; // Pressure in bar
+T02=182+273; // Temperature in kelvin
+T03=815+273; // Temperature in kelvin
+T04=650+273; // Temperature in kelvin
+ci=800*1000/3600; // Velocity in m/s
+eff_nozzle=0.90; // Nozzle efficiency
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+p03=4.12; // in bar
+
+eff_c=1/((T02-T01)/(T01*((rp^((r-1)/r))-1)));
+eff_T=eff_c;
+Wc=ma*Cpa*(T02-T01);
+rp_T=(1/(1-((T03-T04)/(eff_T*T03))))^((r/(r-1)));
+p04=p03/rp_T;
+p04_pc=1/(1-((rg-1)/((rg+1)*eff_nozzle)))^(rg/(rg-1));
+p5=p01;
+T_5=T04*(p5/p04)^((rg-1)/rg);
+T5=T04-eff_nozzle*(T04-T_5);
+cj=sqrt(2*Cpg*10^3*(T04-T5));
+F=ma*(cj-ci);
+
+disp ("%",eff_c*100,"Efficiency of the compressor = ");
+disp ("%",eff_T*100,"Efficiency of the Turbine = ");
+disp ("kW",Wc,"Compressor work = ");
+disp ("m/s (roundoff error)",cj,"The exit speed of gases = ");
+disp ("N (roundoff error)",F,"Thrust developed = ");
diff --git a/3511/CH7/EX7.2/Ex7_2.sce b/3511/CH7/EX7.2/Ex7_2.sce
new file mode 100644
index 000000000..fb25c7b5f
--- /dev/null
+++ b/3511/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,44 @@
+clc;
+T03=1200; // Maximum turbine inblet temperature in kelvin
+rc=4.25; // Pressure ratio across compressor
+ma=25; // Mass flow rate in kg/s
+eff_C=0.87; // Isentropic efficiency of the compressor
+eff_T=0.915; // Isentropic efficiency of turbine
+eff_n=0.965; // Propelling nozzle efficiency
+eff_Tr=0.985; // Transmission efficiency
+del_pcomb=0.21; // Combustion chamber pressure loss in bar
+Cpa=1.005; // Specific heat at constant pressure of air in kJ/kg K
+ra=1.4; // Specific heat ratio of air
+Cpg=1.147; // Specific heat of fuel in kJ/kg K
+rg=1.33; // Specific heat of fuel
+T01=293; // Ambient temperature in kelvin
+p01=1; // Ambient pressure in bar
+A_F=50; // Air Fuel ratio
+p02=rc/p01;
+
+T02=(T01*((rc)^((ra-1)/ra)-1)/eff_C)+T01; // Actual temperature at state 2
+T04=T03-((Cpa*(T02-T01))/(eff_Tr*Cpg)); // Temperature at state 4
+rt=(1/(1-((T03-T04)/(eff_T*T03))))^(1/((rg-1)/rg)); // Pressure ratio across turbine
+p04=(p02-del_pcomb)/rt; // Pressure at 4
+p5=p01;
+T_5=T04/(p04/p5)^((rg-1)/rg); // Temperature at 5
+T5=T04-eff_n*(T04-T_5);
+c5=sqrt (2*Cpg*10^3*(T04-T5));
+F=ma*c5; // Total design thrust
+p04_pc=1/(1-((1/eff_n)*((rg-1)/(rg+1))))^(rg/(rg-1))
+pc=p04*(1/p04_pc);
+Tc=T04*(1/p04_pc)^((rg-1)/rg);
+R=Cpg*10^3*(rg-1)/rg;
+cj=sqrt (rg*R*Tc);
+row_c=(pc*10^5)/(R*Tc);
+A=ma/(row_c*cj); // Area of the propelling nozzle
+d=sqrt (4*A/3.14); // Diameter of the nozzle
+pa=p01;
+Fp=(pc-pa)*10^5*A;// Pressure thrust
+Fm=ma*cj;
+Ft=Fp+Fm; // Total thrust
+sfc=(ma/A_F)*3600/Ft;
+
+disp ("N (roundoff error)",F," Total design thrust/s = ");
+disp ("N (roundoff error)",Ft,"Total thrust /s = ");
+disp ("kg/ N thrust h",sfc, "Specific fuel consumption = ");
diff --git a/3511/CH7/EX7.3/Ex7_3.sce b/3511/CH7/EX7.3/Ex7_3.sce
new file mode 100644
index 000000000..99adf06e4
--- /dev/null
+++ b/3511/CH7/EX7.3/Ex7_3.sce
@@ -0,0 +1,14 @@
+clc;
+p03=4.5; // Pressure at turbine inlet in bar
+T03=800+273; // Temperature at turbine inlet in kelvin
+p04=1.75; // Pressure at turbine outlet in bar
+eff_T=0.75; //Turbine efficiency
+p05=1.03; // Pressure at state 5 in bar
+Cp=1.05; // Specific heat at constant pressure in kJ/kg K
+r=1.38; // Specific heat ratio
+
+T04=T03*(1-eff_T*(1-(1/(p03/p04)^((r-1)/r)))); // Temperature at state 4
+cj=sqrt (2*Cp*10^3*T04*(1-(1/(p04/p05)^((r-1)/r)))); // Velocity leaving nozzle
+
+disp ("K",T04,"(i).Temperature of the gas entering the jet (nozzle) = ");
+disp ("m/s",cj,"(ii).Velocity of gas leaving the jet = ");
diff --git a/3511/CH7/EX7.4/Ex7_4.sce b/3511/CH7/EX7.4/Ex7_4.sce
new file mode 100644
index 000000000..4ea4e7389
--- /dev/null
+++ b/3511/CH7/EX7.4/Ex7_4.sce
@@ -0,0 +1,13 @@
+clc;
+cj=2700; // The effective jet velocity from jet engine in m/s
+ci=1350; // Flight velocity in m/s
+ma=78.6; // Air flow rate in m/s
+
+a=ci/cj;
+F=ma*(cj-ci); // Thrust
+P=F*ci; // Thrust power
+eff_P=2*a/(a+1); // Propulsive efficiency
+
+disp ("N",F,"(i).Thrust = ");
+disp ("MN",P/10^6,"(ii). Thrust power = ");
+disp ("%",eff_P*100,"(iii). Propulsive efficiency = ");
diff --git a/3511/CH7/EX7.5/Ex7_5.sce b/3511/CH7/EX7.5/Ex7_5.sce
new file mode 100644
index 000000000..34887bc87
--- /dev/null
+++ b/3511/CH7/EX7.5/Ex7_5.sce
@@ -0,0 +1,41 @@
+clc;
+pa=0.458; // Ambient pressure in bar
+Ta=248; // Ambient temperature in kelvin
+Ci=805*1000/3600; // Speed of the aircraft in m/s
+rp=4;// Pressure ratio
+DelP_comb=0.21; // Combustion chamber pressure loss in bar
+T03=1100; // Turbine inlet temperature in kelvin
+eff_ram=0.95; // Intake duct efficiency
+eff_c=0.85; // Compressor efficiency
+eff_T=0.90; // Turbine efficiency
+eff_m=0.99; // Mechanical efficiency of transmission
+eff_nozzle=0.95; // Nozzle efficiency
+CV=43; // Low calorific value in MJ/kg
+Ac=0.0935; // Nozzle outlet area in m^2
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic gas constant in J/kg K
+
+p01=pa*(1+eff_ram*((1+Ci^2/(2*Cpa*Ta*10^3))^(r/(r-1))-1));
+p02=p01*rp;
+T01=Ta+Ci^2/(2*Cpa*10^3);
+T02=T01+T01*(rp^((r-1)/r)-1)/eff_c;
+T04=T03-(Cpa*(T02-T01))/(Cpg*eff_m);
+p03=p02-DelP_comb;
+T_04=T03-(T03-T04)/eff_T;
+p04=p03*(T_04/T03)^(r/(r-1));
+p04_pc=1/(1-(((rg-1)/(rg+1))/eff_nozzle))^(rg/(rg-1));
+Tc=T04*(1/p04_pc)^((rg-1)/rg);
+pc=p04/p04_pc;
+row_c=(pc*10^5)/(R*Tc);
+cj=sqrt (rg*R*Tc);
+m=row_c*Ac*cj;
+F=m*(cj-Ci)+Ac*(pc-pa)*10^5; // Total thrust
+mf=(m*Cpg*(T03-T02))/(CV*10^3);
+sfc=mf*3600/F; // specific fuel consumption
+
+disp ("N (roundoff error)",F,"Total thrust = ");
+disp ("kg/N h (roundoff error)",sfc,"specific fuel consumption = ");
+
diff --git a/3511/CH7/EX7.6/Ex7_6.sce b/3511/CH7/EX7.6/Ex7_6.sce
new file mode 100644
index 000000000..a33ca376d
--- /dev/null
+++ b/3511/CH7/EX7.6/Ex7_6.sce
@@ -0,0 +1,31 @@
+clc;
+ci=600*1000/3600; // Velocity in m/s
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic gas constant in J/kg K
+pa=0.458; // Ambient pressure in bar
+Ta=-15+273; // Ambient temperature in kelvin
+rp=9; // pressure ratio
+T03=1200; // Maximum temperature in kelvin
+eff_ram=0.9; // Intake duct efficiency
+eff_c=0.89; // Compressor efficiency
+eff_T=0.93; // Turbine efficiency
+eff_m=0.98; // Mechanical efficiency of transmission
+
+cj=ci
+T_01=Ta+(ci^2/(2*Cpa*10^3));
+p_01=pa*(T_01/Ta)^(r/(r-1));
+p01=eff_ram*(p_01-pa);
+p02=rp*p01;
+T01=T_01;
+T_02=T01*rp^((r-1)/r);
+T02=T01+(T_02-T01)/(eff_c);
+T_04=T03*(1/rp)^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+WN=Cpg*(T03-T04)-Cpa*(T02-T01)/eff_m;// net work done
+eff_th=WN/(Cpg*(T03-T02)); // Thermal efficiency
+
+disp ("kJ/kg (roundoff error)",WN,"Net work done = ");
+disp ("%",eff_th*100,"Thermal efficiency = ");
diff --git a/3511/CH7/EX7.7/Ex7_7.sce b/3511/CH7/EX7.7/Ex7_7.sce
new file mode 100644
index 000000000..40e2e1714
--- /dev/null
+++ b/3511/CH7/EX7.7/Ex7_7.sce
@@ -0,0 +1,33 @@
+clc;
+pa=0.7; // Ambient pressure in bar
+Ta=1+273; // Ambient temperature in kelvin
+Ci=800*1000/3600; // Speed of the aircraft in m/s
+rp=5;// Pressure ratio
+eff_ram=1.00; // Intake duct efficiency
+eff_c=0.85; // Compressor efficiency
+eff_T=0.90; // Turbine efficiency
+eff_comb=0.98; //Combustion efficiency
+eff_nozzle=0.95; // Nozzle efficiency
+rp_T=2.23;// Turbine pressure ratio
+CV=43; // Low calorific value in MJ/kg
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.005;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.4;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic gas constant in J/kg K
+F=25000; // Thrust in N
+
+cj=2*Ci;
+T_01=Ta+(Ci^2/(2*Cpa*10^3));
+T01=T_01;
+T02=T01+(T01*(((rp)^((r-1)/r))-1))/eff_c;
+p_01=pa*(1+Ci^2/(2*Cpa*10^3*Ta))^(r/(r-1));
+p01=eff_ram*(p_01-pa);
+p02=rp*p01;
+T03=(T02-T01)/(eff_T*(1-1/rp_T^((r-1)/r)));
+ma=F/(cj-Ci);
+// Neglecting the effect of the mass addition of fuel on the right hand side
+mf=(ma*Cpa*(T03-T02))/(eff_comb*CV*10^3);
+
+disp ("kg/s",ma,"Mass flow rate of air = ");
+disp ("kg/s (roundoff error)",mf,"Mass flow rate of fuel = ");
diff --git a/3511/CH7/EX7.8/Ex7_8.sce b/3511/CH7/EX7.8/Ex7_8.sce
new file mode 100644
index 000000000..763c4c538
--- /dev/null
+++ b/3511/CH7/EX7.8/Ex7_8.sce
@@ -0,0 +1,42 @@
+clc;
+Ta=288; // Ambient temperature in kelvin
+pa=1.01; // Ambient pressure in bar
+p04=2.4; // Stagnation pressure in bar
+T04=1000;// Stagnation temperature in kelvin
+m=23; // Mass flow rate in kg/s
+rp=1.75; // Pressure ratio
+eff_f=0.88 ; // Efficiency of the fan
+eff_ft=0.9; // Efficiency of the fan turbine
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=284.6; // Characteristic gas constant in J/kg K
+T01=Ta;
+p01=pa;
+pc=p04*(2/(r+1))^(r/(r-1));
+// since pc>pa the nozzle will choke
+Tc=T04*(2/(r+1));
+row_c=pc*10^5/(R*Tc);
+cj=sqrt (r*R*Tc);
+A=m/(row_c*cj);
+p1=pa;
+F=m*cj+(A*(pc-p1)*10^5);
+// For fan engine
+T_02=T01*(rp)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_f;
+// For cold nozzle
+m_nozzle=2*m; // Flow through cold nozzle
+pc1=p01*rp*(2/(r+1))^(r/(r-1));
+F_cold=m_nozzle*sqrt (2*Cpa*10^3*(T02-T01));
+// Fan Turbine
+T05=T04-((m_nozzle*Cpa*(T02-T01))/(m*Cpg));
+T_05=T04-(T04-T05)/eff_ft;
+p_05=p04*(T_05/T04)^(rg/(rg-1));
+pc=p_05*(2/(rg+1))^(rg/(rg-1));
+F_hot=m*sqrt (2*Cpg*10^3*(T05-T01));
+Takeoffthrust= F_cold + F_hot;
+
+disp ("m^2 (roundoff error)",A,"Nozzle Exit area = ");
+disp ("N (roundoff error)",F,"Total Thrust = ");
+disp ("N (roundoff error)",Takeoffthrust,"Take-off Thrust = ");
diff --git a/3511/CH7/EX7.9/Ex7_9.sce b/3511/CH7/EX7.9/Ex7_9.sce
new file mode 100644
index 000000000..44ac536d5
--- /dev/null
+++ b/3511/CH7/EX7.9/Ex7_9.sce
@@ -0,0 +1,47 @@
+clc;
+ma=18.2; // Massflow rater in m/s
+Mi=0.6; // Mach number
+pa=0.55; // Ambient pressure in bar
+Ta=255; // Ambient temperature in kelvin
+rp=5; // Pressure ratio
+T03=1273; // Maximum temperature in kelvin
+eff_c=0.81; // Compressor efficiency
+eff_T=0.85; // Turbine efficiency
+eff_nozzle=0.915; // Nozzle efficiency
+eff_ram=0.9; // Intake duct efficiency
+CV=45870; // Low calorific value in kJ/kg
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=284.6; // Characteristic gas constant in J/kg K
+
+ci=Mi*sqrt(r*R*Ta);
+T_01=Ta+ci^2/(2*Cpa*10^3);
+T01=T_01;
+p_01=pa*(T01/Ta)^(r/(r-01));
+p01=eff_ram*(p_01-pa)+pa;
+p02=rp*p01;
+T02=T01*(1+((rp^((r-1)/r))-1)/eff_c);
+Wc=ma*Cpa*(T02-T01);
+WT=Wc;
+mf=ma/((CV/(Cpg*(T03-T02)))-1);
+f1=mf/ma;
+T04=T03-(WT/((ma+mf)*Cpg));
+rp_T=(1/(1-((1-(T04/T03))/eff_T)))^(r/(r-1));
+p03=p02;
+p04=p03/rp_T;
+p04_pc=1/(1-((rg-1)/((rg+1)*eff_nozzle)))^(rg/(rg-1));
+pc=p04_pc/p04;
+Tc=T04*(1/p04_pc)^((rg-1)/rg);
+cj=sqrt (r*R*Tc);
+row_c=pc*10^5/(R*Tc);
+An=(ma+mf)/(row_c*cj);
+F=(ma+mf)*cj-ma*ci+An*(pc-pa);
+Fp=F*ci;
+
+disp ("kW (roundoff error)",Wc,"Work of compression = ");
+disp ("kW (roundoff error)",WT,"Power output of the turbine = ");
+disp (f1,"Fuel-Air ratio = ");
+disp ("N (roundoff error)",F,"Thrust = ");
+disp ("kW (roundoff error)",Fp/1000,"Thrust power = ");